
The smgn Referen
e ManualHolger M. KienleUniversity of Stuttgart, Germanykienle�
s.u
sb.eduTe
hni
al Report TRCS00{22Department of Computer S
ien
eUniversity of CaliforniaSanta Barbara, CA 93106http://www.
s.u
sb.edu/TRsNovember 2000Abstra
tThis do
ument explains the SUIF Ma
ro Generator (smgn). smgn is a a grammar-based tool that allows toparse an input �le a

ording to a grammar spe
i�
ation. The resulting parse tree
an then be easily navigatedand manipulated with a spe
i�
 ma
ro language.Even though smgn has been spe
i�
ally written for the SUIF system, its design is general enough to be usefulfor the translation of domain spe
i�
 languages. Furthermore, sin
e smgn is interpretative and easy to grasp, it iswell suited for rapid prototyping.Be
ause the ma
ro language is easiest to grasp with
on
rete examples, we give at least one for every major
onstru
t. Stri
tly speaking, the nature of the manual is probably rather a mixture of tutorial and referen
e guide.Please help to improve this manual by sending
orre
tions and omissions to kienle�
s.u
sb.edu.A
knowledgmentsThanks to the members of the SUIF team at Portland Group, In
. (PGI) and Stanford University for making smgnavailable|and for making it general enough to be useful outside of the SUIF-
ontext. (The author is not part ofthe SUIF team and had no part in
oding smgn; however, he got upset at the la
k of de
ent do
umentation.)As a starting point for this manual, the original (3-page) Smgn Referen
e Manual was used.

1

Contents1 Introdu
tion 42 The Big Pi
ture 43 Overview of smgn 44 The Parser 54.1 The Grammar Spe
i�
ation . 54.1.1 Pseudo Nonterminals . 54.1.2 Comments . 54.2 The Parser . 54.3 The Parse-Tree . 65 Toy Grammar 66 The Ma
ro Language 76.1 Text versus Command Context . 96.2 Commands . 106.2.1 Control Flow . 106.2.1.1 if . 106.2.1.2 forea
h . 106.2.1.2.1 Nested Re
ursions . 126.2.1.2.2 first/last-Predi
ate . 136.2.1.2.3 pos . 136.2.1.2.4 ? A

ess Path Wild
ard . 146.2.1.3 endma
 . 146.2.2 Ma
ro De�nition with def . 146.2.3 Ma
ro Calls . 156.2.3.1 Valueless Parameters and <?. . . > . 166.2.3.2 Callba
ks . 166.2.3.3 Calls with Return Values . 176.2.4 Expansion of Ma
ro Files . 186.2.4.1 in
lude . 186.2.4.2 parse . 186.2.5 Expressions and Data Types . 196.2.5.1 Booleans . 196.2.5.2 Numbers . 206.2.5.3 Strings . 216.2.5.4 eval . 216.2.6 De�nitions and Aliases . 226.2.6.1 Node De�nitions with set . 226.2.6.2 Table De�nitions with set . 226.2.6.3 Aliases with let . 236.2.6.4 Aliases with map . 246.3 Text Substitution with [. . . ℄ . 256.4 Text Handling . 256.4.1 Content of Parse Tree Nodes . 256.4.2 Text Se
tions with use . 266.4.3 Redire
ting Output with file . 276.4.4 Text Formatting . 282

6.4.4.1 Newlines . 286.4.4.2 Indentations . 296.4.4.3 String Formatting . 296.5 Debugging Output . 306.5.1 e
ho . 306.5.2 show . 317 Hoof -Spe
i�
 Features 317.1 Dispat
hing of Ma
ro Calls . 327.2 Type Tests . 338 Hints 339 Dis
ussion of smgn's Approa
h 359.1 Strengths . 369.2 Weaknesses . 36A Turtle Example 36A.1 Grammar File (turtle.grm) . 36A.2 Sample Input File (myturtle.turtle) . 37A.3 Ma
ro File (ps.ma
) . 37A.4 Generated PostS
ript Output . 39B Command Summary 40C Command Line 42

3

1 Introdu
tionThis do
ument explains the SUIF Ma
ro Generator (smgn). smgn is a a grammar-based tool that allows to parse aninput �le a

ording to a grammar spe
i�
ation. The resulting parse tree
an then be easily navigated with a spe
i�
ma
ro language. While navigating the parse tree, output
an be
onveniently generated.In the SUIF system, smgn is used to automati
ally translate from the Hoof representation into C++
ode. (Forfurther information refer to The Basi
 SUIF Programming Guide [2℄.) The C/C++ ba
k end (s2
) makes also useof the ma
ro language pro
essor.This referen
e manual introdu
es smgn so that programmers�
an better understand the smgn-spe
i�
 parts of the SUIF system and make
hanges to them.For example, the s2
 ba
k-end is written with smgn. To �x bugs or to extend the ba
k-end requires a fairlygood knowledge of smgn. Furthermore, development of a new ba
k-end (with textual output) is probably most
onveniently done with smgn.�
an utilize smgn for their own proje
ts (whi
h must not be ne
essarily done within the
ontext of SUIF).For example, the Bauhaus proje
t at the University of Stuttgart [3℄ uses smgn to translate
ode written in adomain-spe
i�
 spe
i�
ation language to Ada95. (This manual originated as part of this e�ort.)2 The Big Pi
tureEven though smgn has been spe
i�
ally written for the SUIF system, it is also useful in general for the translationof domain spe
i�
 languages (DSLs). In fa
t, this is the primary motivation to explain it in more detail. Typi
ally,a DSL
an be expressed by a
omparably small grammar and the output transformations are rather simple and intextual form (e.g., a program in another programming or des
ription language). The Hoof spe
i�
ation [2℄ is su
han example.Unfortunately, DSLs tend to
hange frequently throughout their lifetime. Espe
ially in the early design andimplementation phase, typi
ally frequent
hanges to the DSL's grammar and the generated output are ne
essarybefore a stable point is rea
hed. For example, grammar
hanges are
aused by additional requirements and thedis
overy that the grammar is too stri
t or too lax. Thus, the ability of rapid prototyping seems to be an importantfa
tor when developing a new DSL.On the other hand, a typi
al approa
h for building a DSL translator is to use standard
ompiler tools, su
has lex and ya

; but this approa
h is not well suited for rapid development and involves tedious work, su
h as amanual
onstru
tion of the (abstra
t) syntax tree. There are spe
i�
 tools available that assist in the design andimplementation of DSLs, but they often are rather
omplex and diÆ
ult to learn.smgn, however, is well suited for rapid prototyping. There are no lengthy modify-
ompile-run
y
les. Similar to aninterpreted languages, the programmer
an make minor modi�
ations, run the ma
ro interpreter, and immediatelylook at the result. Furthermore, smgn is fairly intuitive and thus easy to learn.To summarize, we believe that smgn is useful for rapid prototyping of small DSLs that require a rather simpletransformation to textual output. smgn does not use fan
y formalisms (su
h as formal semanti
s), but helps you toget the job done.3 Overview of smgnAs mentioned before, smgn is a general tool that is parameterized by� a grammar �le (
ontains the grammar spe
i�
ation).� a text �le (
ontains the a
tual input).� ma
ro �les (
ontain ma
ro language
ode). 4

When smgn is invoked, it �rst reads the grammar �le and then parses the text �le with the obtained grammarspe
i�
ation. During the parse a parse tree is
onstru
ted. If no ma
ro �les are present, exe
ution stops; otherwise,the ma
ro �les are read in and the ma
ro pro
essors starts to interpret them in sequen
e. Typi
ally, the ma
ro �les
ontain
ode that traverse the parse tree and generate output depending on the information obtained from the parsetree. Thus, the same grammar spe
i�
ation and input
an yield di�erent outputs, depending on the used ma
ro �les.In the following, the parser (see se
tion 4) and the ma
ro language (see se
tion 6) are explained in detail.4 The Parser4.1 The Grammar Spe
i�
ationThe grammar spe
i�
ation is similar to BNF, thus no repetitions, optionals, or other synta
ti
 sugar is allowed. It
onsists of produ
tions of the form<lhs> ::= alternative1 | ...| alternativenAn alternative is a (possibly empty) sequen
e of terminals and nonterminals. The names of nonterminals areen
apsulated in angle bra
kets (e.g., <x>). Terminal symbols are written literally, but they
an be also en
apsulatedwith double quotes ("). If spe
ial
hara
ters are used in terminals (e.g., <, >, or |), they must be en
apsulated.The start nonterminal of the grammar is the left-hand-side of the �rst produ
tion.4.1.1 Pseudo NonterminalsThere are spe
ial prede�ned pseudo-nonterminals, whi
h may be used in the grammar:Pseudo Nonterminal Purpose<identifier> Used to mat
h identi�ers.<verbatim> Used to mat
h arbitrary text.The <verbatim> nonterminal mat
hes any text up to, but not in
luding, the terminal
hara
ter that must appearto the right of <verbatim> in the alternative. This feature is useful to
apture text that is not supposed to be parsedand subsequently analyzed, but written out later in its original form.The <identifier> nonterminal mat
hes anything up to, but not in
luding, the point that still
onstitutes a valididenti�er. A valid identi�er
an
ontain digits, letters (upper and lower
ase), and unders
ores in any order.4.1.2 CommentsEvery language should allow
omments. Usually
omments are not spe
i�ed by the grammar itself, but handleddire
tly in the s
anner. In order to make life easier, the parser has
omments already built in. Any line starting witha hash (#) is
onsidered a
omment. Leading white spa
es before a hash are allowed. In fa
t,
omments are identi
alfor grammar, text, and ma
ro �les.4.2 The ParserThe parser is implemented as a straightforward ba
k-tra
king parser. This means that grammars that are not LLand not LALR
an be handled, whi
h frees the grammar writer from the task to take these
onstraints into a

ountwhen developing the grammar. On the other hand, if the grammar and the input for
e the parser to do a lot ofba
k-tra
king, the performan
e may su�er signi�
antly.For example, the following grammar may
ause a lot of ba
ktra
king<if_stat> ::= if <expression> then <statement> endif| if <expression> then <statement> else <statement> endif5

be
ause the parser has to ba
k-tra
k whenever a if-then-else
onstru
t is parsed. Parsing a if-then
onstru
twithout the else part does not result in ba
k-tra
king. In pra
ti
e, it is probably best to try to write a grammar thatis
lose to LL(1).For further information about the limitations of the
urrent parser (espe
ially the ba
k-tra
king algorithm) please
onsult the following �le:$NCIHOME/suif/suif2/tools/smgn/README.4.3 The Parse-TreeWhen a parse is su

essful, a tree is generated representing the parsed text. In this tree, all terminals are removed.1Ea
h node on the tree
ontains a number of
hildren, whi
h are the names of the nonterminals mat
hed by theprodu
tion.Node names|in the following simply
alled names| are used by the ma
ro language to spe
ify a
ertain subtreestarting from a
ertain tree node. Sin
e names
orrespond to nonterminals, all nonterminals in a produ
tion musthave unique names in order to unambiguously spe
ify the subtrees.2A

essing of
hildren of a
ertain node is performed by the dot operator :x.ya

esses
hild y of parent x.Con
atenation of names with the dot operator yields an a

ess path (refer to se
tion 6.4.1).5 Toy GrammarThe following grammar example spe
i�es the syntax for a small s
ripting language for turtle graphi
s:1 # Toy grammar for turtle graphi
s (turtle/turtle.grm)23 <start> ::= <turtle>4 <turtle> ::= turtle <identifier> "{" <
ommand_list> "}"56 <
ommand_list> ::= <
ommands> |78 <
ommands> ::= <
ommand> | <
ommand> <
ommands>9 <
ommand> ::= <turn> | <up> | <down> | <forward>1011 <turn> ::= turn <left_or_right> by <verbatim> degrees ;12 <left_or_right> ::= left | right13 <up> ::= up ;14 <down> ::= down ;15 <forward> ::= forward <verbatim> ;Note that the right hand side of the
ommand list produ
tion (line 6) has a \|" at the end, whi
h means thatthis produ
tion
an expand to nothing.Be
ause it is not possible to expli
itly express numbers, we use the <verbatim> nonterminal (lines 11 and 15) tomat
h them.3 This means, of
ourse, that our grammar is less restri
tive than we would like to have.We
an now write a turtle program|whi
h will be used in the following as a running example|and parse it withsmgn.1A
tually, they are still present in the text
hild node of the en
losing nonterminal, but are not dire
tly a

essible.2In pra
ti
e, if more than one nonterminal with the same name exists in a produ
tion, the �rst is
hosen when the subtree is sele
ted.The other subtrees are simply not a

essible.3If we only wanted to mat
h positive numbers, we
ould have also used the <identifier> nonterminal.6

1 # Toy turtle program (turtle/myturtle.turtle)23 turtle myturtle {4 down;5 forward 10;6 turn left by -90 degrees;7 forward 10;8 }For now, smgn will only parse the program and report syntax errors. Later on, we will show how to outputposts
ript
ode after a su

essful parse (see se
tion A.3).If you run smgn with the -p option (see se
tion C), smgn prints the parse tree. Figure 1 shows an ex
erpt of theparse tree for the previous example. The output has the following s
hema:fNamedList type = ParentNodeChildNode1=>ChildNoden=> . . .text=> . . .gThe
hildren of every nonterminal (ParentNode) are (re
ursively) printed followed by a spe
ial
hild node (
alledtext) that
ontains the input text parsed by the ParentNode. The text node exists only for nonterminals thatdid a
tually mat
h some input text and it never exists for the pseudo-nonterminals identifier and verbatim (seese
tion 4.1.1). Immediate right-re
ursive rules, su
h as<
ommands> ::= <
ommand> | <
ommand> <
ommands> (
f. toy grammar, p. 6, line 8)are represented as (
at) lists.46 The Ma
ro LanguageThe ma
ro pro
essor interprets the ma
ro �les. Typi
ally, ma
ro �les generate output to multiple �les while traversingthe parse tree.The ma
ro language has two
ontexts:� The text
ontext is used to output text to the
urrent output bu�er. Text written in this
ontext is dire
tly(i.e., un
hanged) written to the output bu�er. Several ex
eptions to this rule exist, most notably a way toswit
h to
ommand
ontext.� In text
ontext, the
ommand
ontext is a
tivated with a starting angle bra
ket (<) and terminated with a
losing angle bra
ket (>). Most notably, in the
ommand
ontext it is possible to a

ess nodes in the parsetree.Both
ontexts are dis
ussed in more detail in se
tion 6.1.When the interpreter starts to pro
ess the ma
ro �le, it is in text
ontext. Thus, running the following ma
ro �le1 # My first ma
ro file (turtle/first.ma
)23 This text is dire
tly written to stdout...</>will output4This
attening is performed be
ause the ma
ro generator allows to iterate over these nodes
onveniently with a spe
ial forea
h loop
onstru
t. 7

1 {NamedList type = start2 turtle=>3 {NamedList type = turtle4 identifier=>myturtle5
ommand_list=>6 {NamedList type =
ommand_list7
ommands=>8 {Ma
roListObje
t type =
ommands910 {NamedList type =
ommands11
ommand=>12 {NamedList type =
ommand13 down=>14 {NamedList type = down15 text=>down;16 }1718 text=>down;19 }2021 text=>down;22 }2324 [...℄2526 {NamedList type =
ommands27
ommand=>28 {NamedList type =
ommand29 forward=>30 {NamedList type = forward31 verbatim=>1032 text=>forward 10;33 }3435 text=>forward 10;36 }3738 text=>forward 10;39 }4041 }42

43 text=>down;44 forward 10;45 turn left by -90 degrees;46 forward 10;4748 }4950 text=>turtle myturtle {51 down;52 forward 10;53 turn left by -90 degrees;54 forward 10;55 }56 }5758 text=>5960 turtle myturtle {61 down;62 forward 10;63 turn left by -90 degrees;64 forward 10;65 }66 }

Figure 1: Example parse tree (generated with -p option)
8

expanded file
ount is 1This text is dire
tly written to stdout...followed by a newline if you run it, for example, with the turtle grammar and the demo text �le give in se
tion 5 (oralternatively se
tions A.1 and A.3). The �rst line is output by smgn and should not bother us for now.The next example makes use of the
ommand
ontext to print the <identifier> nonterminal that follows theturtle token (
f. line 4 of the turtle grammar �le):1 # My se
ond ma
ro file (turtle/se
ond.ma
)23 Name of the turtle program: <turtle.identifier></>The generated output readsexpanded file
ount is 1Name of the turtle program: myturtleThe
onstru
t \turtle.identifier" is used to denote a
ertain node in the parse tree. The �rst item (turtle)denotes the root of the parse tree. Note that the root is determined by the right side of the start nonterminaland not the start nonterminal itself (whi
h is start, line 3). The se
ond item denotes a
hild of turtle. Theturtle nonterminal (line 4) has two (potential)
hildren: identifier and
ommand list. Our example sele
ts
hildidentifier.The following se
tion explain the text and
ommand
ontext in more detail.6.1 Text versus Command ContextAs mentioned before, the text
ontext is used to output raw text uninterpreted to the
urrent output bu�er. Thefollowing ex
eptions exist for this rule:� Newlines are ignored. (This is the default behavior and
an be
hanged; see se
tion 6.4.4.1.)� Starting and ending whitespa
es are ignored. This is useful to indent the output text in the ma
ro �le withouta�e
ting the produ
ed output.� Comments (introdu
ed with a #) are not printed.� Single
hara
ters
an be es
aped with a pre
eding ba
kslash (e.g., \x). This is espe
ially useful if you want toprint a hash or blank at the beginning of a line. Furthermore, to print an opening angle bra
ket it is ne
essaryto es
ape it; otherwise smgn interprets it as the beginning of the
ommand
ontext.5� Es
ape to the
ommand
ontext: Text starting with an angle bra
ket is interpreted as the beginning of a
ommand
ontext (see below) and thus not printed literally.When the interpreter starts to pro
ess the ma
ro �le, it is in text
ontext and the
urrent output bu�er is stdout.(Refer to se
tion 6.4.3 for how to
hange the output bu�er.)The
ommand
ontext is entered with an (un-es
aped) starting angle bra
ket (<). One has the following
onstru
tsavailable in
ommand
ontext:� Commands:Certain
ommands
onsist of multiple tags (all given between angle bra
kets). An example of su
h a
ommandis <if> . . . <endif>.Other
ommands
onsist only of a single pair of angle bra
kets, for example5Stri
tly speaking, this is not always ne
essary. For example, an angle bra
ket followed by a blank need not be es
aped.9

<set x to foo> or <ignore linefeeds>.� Node a

esses:The
ontents of a node
an be printed by giving an a

ess path (see se
tion 6.4.1) to that node. The path
anbe absolute, by giving the root node, or relative by starting with a name that represents a node in the parsetree. We have already seen an example for an absolute a

ess path before, namely<turtle.identifier>It is not an error to expand a node that does not exist. If one does this, nothing is output; you will get awarning message instead.If a �eld is expanded that does not end with a printable node then nothing is output. For example, both<turtle> and <turtle.
ommand list>expand to nothing.6.2 Commands6.2.1 Control Flow6.2.1.1 ifThe if ma
ro
omes in several
avors:� <if (bool-expr)> . . . <endif>The text inside the
onstru
t is only expanded if the boolean expression is \true."� <if (bool-expr)> . . . <else> . . . <endif>The text after the <if> is expanded if the boolean expression is \true;" otherwise the text after the <else> isexpanded.� <if (bool-expr)> . . .<elseif (bool-expr)><elseif (bool-expr)> . . .<else> . . .<endif>The semanti
 should be intuitively
lear without further explanation.Boolean expressions are explained in se
tion 6.2.5.1.6.2.1.2 forea
hThe forea
h ma
ro allows iteration over a
at list. Su
h lists are
reated by immediate right-re
ursive grammarrules of the following form:6<lhs> ::= <element> | <element> <lhs>The parser automati
ally
attens the hierar
hi
al stru
ture into an order-preserving list that is atta
hed to the parentnode lhs. As a result of the
attening, all list elements are atta
hed as
hildren to lhs. All these
hild nodes haveidenti
al names, namely element (and thus
an only be a

essed with the forea
h ma
ro).The ma
ro
omes in two
avors:� <forea
h id in tree-node > . . . <endfor>This
onstru
ts iterates over a list who is atta
hed at the parent tree-node. A referen
e that points to the
urrent node in the list is assigned to id . Note that id does not represent the
urrent node, but rather areferen
e to the
urrent node. Thus, the
urrent node is a

essed with6Currently exa
tly this form is required! 10

id.elementFor example, the following turtle ma
ro �le iterates over all
ommands and prints their textual representation:1 # turtle/forea
h.ma
23 <forea
h
md in turtle.
ommand_list.
ommands>4 <
md.
ommand.text></>5 <endfor>This yields the following output:expanded file
ount is 1down;forward 10;turn left by -90 degrees;forward 10;In the above example, the given tree-node was the a
tual parent of the node of the list (i.e.,
orresponding tolhs). It is also possible to \rea
h into" the list for the traversal by giving an a

ess path that goes beyondthe parent node. If a
ertain list element does not have the spe
i�ed a

ess path, it is ignored. The followingexample uses an a

ess path that only rea
hes list elements that represent a turn
ommand:1 # turtle/forea
h2.ma
23 <forea
h
md in turtle.
ommand_list.
ommands.
ommand.turn>4 <
md.text></>5 <
md.verbatim></>6 <endfor>Hen
e the following output is generated:expanded file
ount is 1turn left by -90 degrees;-90In this
ase
md is indeed the node spe
i�ed by the a

ess path and not a referen
e to it! Hen
e our �rstexample
an be rewritten more
onveniently as:1 # turtle/forea
h3.ma
23 <forea
h
md in turtle.
ommand_list.
ommands.
ommand>4 <
md.text></>5 <endfor>� <forea
h id in tree-node su
h that (bool-expr)> . . . <endfor>The su
h that
lause in this
onstru
t
an be used to put a further restri
tion on the sele
ted list elements.The
urrent list element is skipped if bool-expr evaluates to \false." The boolean expression
an
ontain the
urrent list element (i.e., id).For example, the following
ode generates the same output as the se
ond forea
h example (forea
h2.ma
):1 # turtle/su
hthat.ma
23 <forea
h
md in turtle.
ommand_list su
h that (exists
md.
ommands.
ommand.turn)>4 <
md.
ommands.
ommand.turn.text></>5 <
md.
ommands.
ommand.turn.verbatim></>6 <endfor> 11

Another example is the sele
tion based on the value of a
ertain node|in this
ase the verbatim node of theforward
ommand:1 # turtle/su
hthat2.ma
23 <forea
h fwd in turtle.
ommand_list.
ommands.
ommand.forward4 su
h that (fwd.verbatim == "10")>5 <fwd.text></>6 <endfor>The following output is generated:expanded file
ount is 1forward 10;forward 10;To summarize, the forea
h ma
ro in its simplest form pro
esses all elements in a list. The sele
tive pro
essing oflist elements
an be a
hieved with two te
hniques: (1) giving an a

ess path that goes beyond the parent node and(2) introdu
ing a su
h that
lause.6.2.1.2.1 Nested Re
ursions The forea
h
onstru
ts
an also handle nested lists. For example, the fol-lowing produ
tions de�ne an outer list that
ontains an inner list:1 <start> ::= <outers>2 <outers> ::= <outer> | <outer> <outers>3 <outer> ::= "{" <inners> "}"4 <inners> ::= <inner> | <inner> <inners>5 <inner> ::= "*"This grammar allows to parse input su
h as{ * * * } { * }To iterate over all of the innermost nested list elements, you
an write:1 <forea
h elem in outers.outer.inners.inner>2 Handle _all_ *'s here...3 <endfor>Alternatively, you
an use two nested forea
h
onstru
ts:1 <forea
h oelem in outers.outer>2 Handle { here...3 <forea
h ielem in oelem.inners.inner>4 Handle *'s of
urrent list here...5 <endfor>6 Handle } here...7 <endfor>The latter is more useful, if one wants to distinguish the innermost lists.
12

6.2.1.2.2 Predi
ates Inside the forea
h ma
ros the spe
ial predi
ates first and last
an be used:� (first id)This predi
ate is \true" if the
urrent list element (i.e., id) is the �rst element that is pro
essed in the
or-responding forea
h ma
ro. Note that the �rst pro
essed element is not ne
essarily the �rst element in thelist.� (last id)This predi
ate is \true" if the
urrent list element (i.e., id) is the last element that is pro
essed in the
or-responding forea
h ma
ro. Note that the last pro
essed element is not ne
essarily the last element in thelist.If these
ommands are used outside a forea
h ma
ro, they have no e�e
t.The following example makes use of both predi
ates:1 # turtle/firstlast.ma
23 <forea
h fwd in turtle.
ommands.
ommand.forward>4 <if (first fwd)>5 first:\ <>6 <endif>7 <if (last fwd)>8 last:\ <>9 <endif>1011 <fwd.text></>12 <endfor>The forea
h
onstru
t restri
ts the list to two items:expanded file
ount is 1first: forward 10;last: forward 10;6.2.1.2.3 pos Inside the forea
h ma
ros the pos ma
ro
an be used:� <pos id>Output the
urrent number of iterations of the forea
h ma
ro with the
urrent list element id . The �rstiteration is denoted by 0.If pos is used outside a forea
h ma
ro, it has no e�e
t.For example, the following turtle ma
ro �le1 # turtle/pos.ma
23 <forea
h
md in turtle.
ommand_list.
ommands.
ommand.forward>4 <pos
md>5 : <
md.text></>6 <endfor>outputsexpanded file
ount is 10: forward 10;1: forward 10; 13

6.2.1.2.4 ? A

ess Path Wild
ard So far, we used the forea
h
onstru
t to iterate over lists. However,the
onstru
t
an be also used to iterate over a node's
hildren by means of giving a wild
ard (?) in the tree-nodea

ess path.It is only possible to give a single wild
ard in the a

ess path and the path must not start with a wild
ard.The wild
ard is espe
ially
onvenient to iterate over tables that have been
onstru
ted with the set
onstru
t(see se
tion 6.2.6.2).Here is a simple example1 # ma
/wild
ard.ma
23 <set x[a℄ to a>4 <set x[b℄ to b>5 <set x[
℄[a℄ to
a>6 <set x[
℄[b℄ to
b>7 <set x[d℄ to d>89 <forea
h value in x.?>10 <value></>11 <endfor>12 ---</>13 <forea
h value in x.?.b>14 <value></>15 <endfor>16along with the generated output:abd---
bNote, that the �rst forea
h mat
hes x[
℄ only on
e (at the third iteration) and does not generate output for thisnode sin
e it does not denote a string.6.2.1.3 endma
The <endma
>ma
ro immediately terminates expansion of a ma
ro de�nition. If the ma
ro is
alled at the outermosts
ope (i.e., not during ma
ro expansion) then interpretation of this ma
ro �le is terminated.This ma
ro is most useful in
ombination with the if ma
ro to stop expansion of the
urrent ma
ro de�nition ifa
ertain
ondition is met.6.2.2 Ma
ro De�nition� <def name formal1 . . . formalN> . . . <enddef>De�nes a new ma
ro with the name name. The formal parameters are listed after the ma
ro's name. (Notethat no
ommas are used to list the formals.) The formal parameter names are known within the ma
ro bodyand
an be used in
ommand
ontext like node names. At the beginning of the ma
ro body, the interpreter isin text
ontext.After the new ma
ro is de�ned, it
an be
alled by using its name (refer to se
tion 6.2.3).14

Ma
ros are identi�ed by their name and the number of their parameters. Thus, it is possible to de�ne ma
ros thathave the same name but di�er in the number of their parameters.If a new ma
ro is de�ned that has the same name and the same number of formal parameters as a previouslyde�ned ma
ro, the new ma
ro repla
es the previously de�ned one. In this
ase, no warning is given!It is possible to have nested ma
ro de�nitions (i.e., a ma
ro de�nition within another ma
ro de�nition). However,nested ma
ros have global visibility, i.e., on
e a ma
ro de�nition has been pro
essed, it
an be
alled from anywhere.6.2.3 Ma
ro Calls� <name a
tual1 . . . a
tualN>Expands (or
alls) a ma
ro with the name name. If a ma
ro with su
h a name does not exist, a warning isgiven and the
all is ignored.The a
tual parameters of the
all are mapped in the same order to the ma
ro's formals parameters. A
tualsare given in
ommand
ontext. An a
tual is typi
ally an a

ess path or a string. (The latter must be en
losedin double quotes.)If more than one ma
ro with a mat
hing name exist, the ma
ro to be
alled is determined as follows:{ If a ma
ro with the same number of parameters exists, it is
alled.{ If ma
ros with less parameters exist, the ma
ro with the most parameters is
alled. The super
uousformal parameters are valueless.It is possible to
he
k for valueless parameters with the <?. . . >
onstru
t (see se
tion 6.2.3.1).{ If only ma
ros with more parameters exist, a warning is given and the
all is ignored.Thus, the ma
ro with the least super
uous formal parameters is
hosen.Inside the ma
ro, aliases de�ned by a surrounding let (see se
tion 6.2.6.3) are a

essible.Re
ursive
alls are of
ourse possible.Calls with no a
tuals introdu
e an interesting ambiguity:<name>
an be either a
all to ma
ro name or an a

ess path to node name. In su
h
ases, the ambiguity is resolved in favorof the ma
ro
all. For example, the following
ode1 # ma
/ambiguous.ma
23 <def x>4 ma
ro x5 <enddef>67 <set x to variable x>89 <x></>generatesexpanded file
ount is 1ma
ro x
15

6.2.3.1 Valueless Parameters and <?. . . > A ma
ro
all must not provide values for all formal parameters.Formal parameters that
annot be bound to an a
tual parameter are
alled valueless.If an attempt is made to expand a valueless formal parameter, a warning is given and not value is output.However, it is possible to use a valueless formal parameter as an a
tual parameter in another ma
ro
all.� <?param text>Che
ks if the formal parameter param is bound to a value. If this is the
ase then text is output; otherwise textis ignored and the whole
onstru
t has no e�e
t.Note that text is not interpreted as text
ontext whi
h means that it is not possible to swit
h into
ommand
ontext! For example, the following is illegal:<def foo p1># Illegal!Value of p1 (if existent): <?p1 <p1>>.<enddef>In order to a
hieve the desired behavior one
an write1 # ma
/
all_opt.ma
23 <def foo p1 p2>4 foo:5 <if ([<?p1 true>℄)>6 \ <p1>7 <endif>8 <if ([<?p2 true>℄)>9 \ <p2>10 <endif>11 </>12 <enddef>1314 <foo>15 <foo "x">16 <foo "x" "y">whi
h gives the expe
ted outputexpanded file
ount is 1foo:foo: xfoo: x yThis example makes use of text substitution (see se
tion 6.3).6.2.3.2 Callba
ksText substitution (see se
tion 6.3)
an be employed to implement
allba
ks.� <[<var>℄ a
tual1 . . . a
tualN>Expands a ma
ro whose name is given by the a

ess path var.An ordinary ma
ro
all dire
tly gives the name of the ma
ro. In the this
ase, the
ontents of var supplies the ma
roname.The following turtle example de
ouples the iteration over the
ommands list from the a
tion performed for anindividual list element: 16

1 # turtle/
allba
k.ma
23 # Iteration of the list4 <def iter_
ommands
allba
k>5 <forea
h
md in turtle.
ommand_list.
ommands.
ommand>6 <[<
allba
k>℄
md>7 <endfor>8 <enddef>910 # Callba
k for ea
h list element11 <def handle_
ommand
md>12 <
md.text></>13 <enddef>1415 <iter_
ommands "handle_
ommand">The iteration
ode in iter
ommands
an be reused with di�erent
allba
ks.6.2.3.3 Calls with Return ValuesText substitution (see se
tion 6.3)
an be used to \return" a string result ba
k to the
aller. If the
all isen
apsulated with square bra
kets, the output that the ma
ro
all generates is not written to the
urrently a
tiveoutput bu�er; instead, the output is textually substituted for the ma
ro
all.The following example shows how this me
hanism
an be used to implement a ma
ro
all that returns a booleanresult. Its output is identi
al to
all opt.ma
 (see se
tion 6.2.3.1):1 # ma
/
all_w_return.ma
23 <def exists_param param>4 <if ([<?param true>℄)>5 true6 <else>7 false8 <endif>9 <enddef>1011 <def foo p1 p2>12 foo:13 <if ([<exists_param p1>℄)>14 \ <p1>15 <endif>16 <if ([<exists_param p2>℄)>17 \ <p2>18 <endif>19 </>20 <enddef>2122 <foo>23 <foo "x">24 <foo "x" "y">The ma
ro exists param outputs either the string "true" or "false". By
alling the ma
ro with square bra
ketsat a pla
e that expe
ts a boolean result (lines 13 and 16), the
all gets substituted with the output of the
all, whi
h17

then is interpreted as a boolean value.6.2.4 Expansion of Ma
ro FilesThere are two me
hanisms that allow the expansion of (ordinary) �les as ma
ro �les: in
lude and parse.6.2.4.1 in
lude� <in
lude ma
ro-�le-name>Pro
essing of the
urrent ma
ro �le is suspended and interpretation of the ma
ro �le with name ma
ro-�le-namestarts.Ma
ro-�le-name is treated as text
ontext. Thus, the name
an be given literally or built by swit
hing to the
ommand
ontext.The
urrent working dire
tory as well as dire
tories given at the smgn
ommand line with the -I
ag (see se
tionC) are sear
hed for the ma
ro �le. If the �le is not found, a warning is given and interpretation pro
eeds afterthe in
lude ma
ro.Interpretation of the in
luded �le a�e
ts the state of the in
luding �le. After interpretation of the in
luded �lehas been �nished, normal exe
ution resumes at the in
luding �le.Furthermore, the following is important to know:{ The in
luded ma
ro �le must not exe
ute the file
onstru
t.7{ Output that is generated while the in
luded �le is pro
essed is lost.Thus, the in
luded ma
ro �le should typi
ally
ontain only ma
ro de�nitions and exe
ute
ommands thatmanipulate the parse tree.6.2.4.2 parse� <parse �le-name>Pro
essing of the
urrent ma
ro �le is suspended and interpretation of the (internal) bu�er with the name�le-name starts. Note that �le-name refers to a bu�er that is
urrently (internally)
onstru
ted and not to a�le that resides on disk.File-name is treated as text
ontext. Thus, the name
an be given literally or built by swit
hing to the
ommand
ontext.This me
hanism allows the dynami
 generation and interpretation of ma
ro �les. For example, the followingma
ro �le dynami
ally
reates two ma
ro de�nitions in the bu�er trash and then
alls these de�nitions.1 # ma
/parse.ma
23 <def build_def fname>4 <file trash>5 \<def <fname> txt>6 <fname>: \<txt>\</>7 \<enddef>8 <enddef>910 <build_def "mydef1">11 <build_def "mydef2">7The
urrently implementation redire
ts the output generated by the in
luded ma
ro �le into a dummy output �le. Swit
hing theoutput �le in the in
luded �le
onfuses smgn and results in the generation of a �le with the telling name ������.18

1213 <file>14 <parse trash>15 <mydef1 "Hello ">16 <mydef2 "World!">The generated output is as follows:expanded file
ount is 2mydef1: Hellomydef2: World!As a (possibly unwanted) side-e�e
t, the generated bu�er is written to disk after smgn terminates:1 <def mydef1 txt>mydef1: <txt></><enddef><def mydef2 txt>mydef2: <txt></><enddef>However, the �le
an prove useful for debugging.6.2.5 Expressions and Data TypesBesides strings, smgn has (pseudo) support for booleans and numbers.6.2.5.1 BooleansBoolean expressions are mainly used by the if ma
ro and the su
h that
lause of the of the forea
h ma
ro.Constants: The boolean
onstants \true" and \false" are simply represented as strings "true" and "false", re-spe
tively.8 For example:1 # ma
/boolean1.ma
23 <if ("true")>4 I am expanded!</>5 <endif>Sin
e boolean
onstants are strings, it is also possible to given an a

ess path to a node that
ontains a \booleanstring:"1 # ma
/boolean2.ma
23 <set x to true>45 <if (x)>6 I am expanded!</>7 <endif>Predi
ates: All boolean predi
ates take non-boolean values and yield a boolean value. The following predi
ates areavailable:� (exists node)If the given node exists in the parse tree, this
onstru
t yields \true." Otherwise it yields \false."Node is treated as
ommand
ontext (i.e., it is not surrounded by angle bra
kets).For an example refer to se
tion 6.2.1.2.8smgn
urrently interprets every string di�erent from "true" as \false."19

Operators: All boolean operators take boolean values and yield a boolean value. The following operators areavailable:� (! bool-expr)Unary \not."� (bool-expr && . . . && bool-expr)(bool-expr & . . . & bool-expr)The result is \true" if all bool-exprs are \true," otherwise the result is \false."Both the && and the & operator behave the same. (They are no short-
ir
uit operators.)� (bool-expr | . . . | bool-expr)(bool-expr || . . . || bool-expr)The result is \false" if all bool-exprs are \false," otherwise the result is \true."Both the || and the | operator behave the same. (They are no short-
ir
uit operators.)It is often possible to omit round bra
kets, but this is dis
ouraged sin
e no pre
eden
e or asso
iativity rules arede�ned.It is possible to use numbers (see se
tion 6.2.5.2) instead of boolean
onstants in boolean expressions. However,sin
e all numbers are treated as \false," this does not seem to make mu
h sense and hen
e will not be dis
ussed anyfurther.6.2.5.2 NumbersNumeri
 expressions are mainly used by the eval
onstru
t (see se
tion 6.2.5.4).Constants: A number
onstant is a de
imal integer value. Optionally, a leading \+" or \�"
an be written (withoutwhitespa
es before the digits). No
oating-point numbers are supported.The numbers are (internally) represented as strings. Be
ause of this, it is possible to give an a

ess path to anode that
ontains a string that
an be interpreted as a number
onstant.9The
onstant
an be arbitrarily large, but predi
ates and operators restri
t the pre
ision.Predi
ates: Predi
ates yield a boolean value.� (number == number)(number = number)The above predi
ates
ompare two string for equality. Both the == and the = operator behave the same.� (number != number)The != predi
ate is identi
al to(! (string = string)).� (number >= number)� (number > number)� (number <= number)� (number < number)The
ompared numbers must be small enough to �t in a C long type.10Operators: All numeri
al operators take numeri
al values and yield a numeri
 value. The following operators areavailable:� (number + number)9If strings are no integers, the result of numeri
al operations is (for pra
ti
al purposes) unpredi
table.10Hen
e the a
tual size depends upon the
ompiler and platform.20

� (number - number)� (number * number)� (number / divisor)First, the divisor is
onverted to an integer value. If the divisor is zero, the result is \false." Otherwise,the result is the division
onverted to an integer value.Conversion to an integer values is done by trun
ating the remainder.Every
omputation step must be small enough to �t in a C int type.6.2.5.3 StringsStrings are mainly used in boolean expressions and as a
tual parameters in ma
ro
alls.Constants: A strings
onstant is en
losed within double quotes:"I am a string
onstant"String
onstants are only used in
ommand
ontext. It is not possible to swit
h to
ommand
ontext within astring
onstant.Predi
ates: Predi
ates yield a boolean value.� (string == string)(string = string)The above predi
ates
ompare two string for equality. Both the == and the = predi
ate behave the same.Typi
ally, string is a string literal or an a

ess path that results in a node that holds a string.String is treated as
ommand
ontext. This means that string literals must be en
apsulated by quotationmarks. For example:1 <if (turtle.identifier == "myturtle")>2 Strings are identi
al.3 <endif>� (string != string)� (number >= number)� (number > number)� (number <= number)� (number < number)String
omparison uses the ASCII
hara
ter set to establish a total ordering of the
hara
ters.6.2.5.4 evalCertain expressions
an be only used in
ertain ma
ros (e.g., the if ma
ro expe
ts a boolean expression). In
ontrast,the eval ma
ro expands an arbitrary expression.� <eval(expr)>Expands the expression expr. The result of the expression is returned as a string.The eval ma
ro is also useful in
ombination with the set ma
ro. See se
tion 6.2.6.1.Here are some examples1 # turtle/eval.ma
23 <eval ((1+2)*4)></>4 <eval (turtle.identifier)></>5 <eval ("A string" == turtle.identifier)></>6 <eval (! ("false"))></> 21

with the
orresponding output:expanded file
ount is 112myturtlefalsetrue6.2.6 De�nitions and AliasesThis se
tion dis
usses the possibilities that smgn o�ers to introdu
e new names and new parse tree nodes.6.2.6.1 Node De�nitions with set� <set node to str>De�nes a (new) node in the parse tree with the a

ess path node. The
ontents of the node is the string str.If the a

ess path does denote an existing node that is not a string, a warning is given and the ma
ro is ignored.Str is treated as text
ontext. Thus, the name
an be given literally or built by swit
hing to the
ommand
ontext.It is not possible to delete a node on
e it has been introdu
ed with a node de�nition. However, a node
an berede�ned. For example, the following
ode �rst de�nes a new node x and then rede�nes x by using its \old"
ontents:1 # ma
/set.ma
23 <set x to 42>4 <set x to <eval (x+1)>>It is also possible to rede�ne an existing node that is part of the original parse tree as long as the node denotesa string. This is the
ase for leaf nodes whose a

ess paths end with identifier, verbatim, or text.6.2.6.2 Table De�nitions with setThe set ma
ro in
onjun
tion with text substitution (see se
tion 6.3) yield a powerful
onstru
t
alled tables.When spe
ifying an a

ess path for node, you
an give parts of the path in square bra
kets.11 The text in thesquare bra
kets is treated as text
ontext and gets expanded before the a

ess path is applied. The following exampledemonstrates the
on
ept:1 <set x[y℄ to whatever>23 <set nodename to y>4 <set x[<nodename>℄ to whatever>The set ma
ros in line 1 and 4 have the same e�e
t. The a

ess path in line 1 is equivalent to x.y. The
exibilityof tables is demonstrated in line 4. The node nodename is expanded (yielding the string y) resulting in the a

esspath x.y. Hen
e, tables are similar to asso
iative arrays.Note that it is possible to \
on
atenate" square bra
kets:1 <set x[y℄[z℄ to whatever>Nesting them, however, is not allowed.The following (a bit arti�
ial) example
he
ks if a turtle program
ontains dupli
ate turtle
ommands.11However, the �rst element of the path must not be a bra
ket; otherwise smgn
an get
onfused.22

1 # ma
/dupli
ates.ma
23 <def
he
k str1 str2>4 <if (exists dup[<str1>℄[<str2>℄)>5 Dupli
ate dete
ted! (<str1>/<str2>)</>6 <endif>78 <set dup[<str1>℄[<str2>℄ to exists>9 <enddef>1011 <forea
h
md in turtle.
ommand_list.
ommands.
ommand>12 <if (exists
md.turn)>13 <
he
k
md.turn.left_or_right
md.turn.verbatim>14 <elseif (exists
md.up)>15 <
he
k "up" "">16 <elseif (exists
md.down)>17 <
he
k "down" "">18 <elseif (exists
md.forward)>19 <
he
k "forward"
md.forward.verbatim>20 <endif>21 <endfor>The generated output is as follows:expanded file
ount is 1Dupli
ate dete
ted! (forward/10)6.2.6.3 Aliases with let� <let id be node> . . . <endlet>The name id is de�ned to denote the same parse tree node as the a

ess path given by node does. Thus, id isan alias (or short-hand form) for node and
an be used instead of the full a

ess path.Id is valid only within the body of the
onstru
t. More pre
isely, id is known to all
onstru
ts that are exe
utedwithin let's body (dynami
 name binding). Thus, if a ma
ro is
alled in the body, the ma
ro
an refer to thede�ned alias.The body of let is (silently) not expanded if the a

ess path given by node is not valid!12The following turtle ma
ro �le gives an example of the let
onstru
t:1 # turtle/let.ma
23 <def print>4 <t.identifier></>5 <id></>6 <enddef>78 <let t be turtle>9 <let id be t.identifier>10 <print>11 <endlet>12 <endlet>12This
an be
onveniently used to
hange
ontrol
ow depending if an a

ess path exists or not. However, it is not intuitive and hardto debug. 23

The
orresponding output is a follows:expanded file
ount is 1myturtlemyturtleIt is also possible to give a
omma-separated list of alias de�nitions. For example, the above example
an berewritten less verbose:1 # turtle/let2.ma
23 <def print>4 <t.identifier></>5 <id></>6 <enddef>78 <let t be turtle, id be t.identifier>9 <print>10 <endlet>6.2.6.4 Aliases with map� <map node1 to node2>The a

ess path given by node2 denotes now the parse tree node given by a

ess path node1. Thus, node2 isan aliased a

ess path.The map
onstru
t is a
ombination of set and let. It is similar to set in the sense that it de�nes a (new) node inthe parse tree, and similar to let in the sense that an alias to another node is established.It is possible to use square bra
kets (see se
tion 6.2.6.2) when spe
ifying the a

ess path for node1 as well as fornode2.The following example uses map to
onstru
t a table, whi
h
an then be easily iterated with the forea
h
onstru
t:1 # turtle/map.ma
23 <set x[a℄ to a>4 <set x[b℄ to b>5 <set x[
℄[a℄ to
a>6 <set x[
℄[b℄ to
b>7 <set x[d℄ to d>89 <map x[a℄ to l[a℄>10 <map x[b℄ to l[b℄>11 <map x[
℄[a℄ to l.
>12 <map x[
℄[b℄ to l.d>13 <map x[d℄ to l[e℄>14 <map turtle.identifier to l[f℄>15 <set l.g to xxx>1617 <forea
h value in l.?>18 <value></>19 <endfor>The ma
ro �le generates the following output: 24

ab
a
bdmyturtlexxxThe set in line 15 shows that
onstru
ts do not di�erentiate between nodes that have been introdu
ed by set ormap.136.3 Text Substitution with [. . . ℄� [. . . ℄Expands the
onstru
ts between the square bra
kets. The generated output of these
onstru
ts is then textuallyrepla
ed with [. . . ℄. Note that this means that the output of the expanded
onstru
ts is not written to the
urrently a
tive output bu�er.The expanded
onstru
ts must not
hange the output bu�ers (e.g., by
alling the file or input ma
ro).14This substitution only works in the
ommand
ontext. If used in the text
ontext, the square bra
kets aresimply printed. For example, the following
ode1 # ma
/sb.ma
23 <def m>4 Some output...5 <enddef>67 [<m>℄outputsexpanded file
ount is 1[Some output...℄Several
on
rete appli
ations of this
onstru
t have been already dis
ussed:� Callba
ks (se
tion 6.2.3.2).� Table de�nitions with set (se
tion 6.2.6.2).� Ma
ro
alls with return values (se
tion 6.2.3.3).6.4 Text Handling6.4.1 Content of Parse Tree NodesWhen generating output, it is frequently ne
essary to a

ess textual information from the parse tree|either to outputthe
ontents of the node or to
hange
ontrol
ow depending on the
ontents of the node.13Almost true. If the same a

ess path is de�ned by set as well as map, then the
ontents given by set is always
hosen. Thus, in su
ha
ase map has no e�e
t!14Debugging note: If this is done, a �le with the name ������ will be
reated by smgn.
25

� <node> (text
ontext)node (
ommand
ontext)The
ontents of a node in the parse tree
an be a

essed by giving an a

ess path to that node. (Note that allnodes in the original parse tree represent nonterminals; terminals are lost.) If the a

ess path does not denotea string, the empty string is output (and no warning is given).The a

ess path has two spe
i�
 variants:{ If the path ends with verbatim or identifier, the
ontent of that node is output (i.e., the input thathas been parsed for the
orresponding nonterminal).{ If the path ends with text then the
ontent of the nonterminal that immediately pro
eeds text is output.This does not work if the immediately pro
eeding nonterminal is verbatim or identifier.It is
onsidered a mistake to follow an a

ess path to a node that does not exist. If you do this, no output is generated;you will get a warning message instead.6.4.2 Text Se
tions with useIt
an be awkward to generate sequential output for a �le. Sometimes one would like to generate output for a
ertainposition in the output �le without disturbing the other. For example, if generating C
ode you might want to putall in
lude �les at the top of the �le. One approa
h would be to pro
ess the text �le twi
e: The �rst pass outputsthe required in
lude �les and the se
ond pass generates the a
tual C
ode.Fortunately, smgn o�ers a more
onvenient approa
h. It is possible to split an output �le into several se
tions.The output
an then be redire
ted into an arbitrary se
tion. The �nal output is obtained by
on
atenation of these
tions. The se
tions are ordered sequentially. A new se
tion is appended at the end after all existing ones. Thus,the order of the generated output depends on the
reation time of the se
tions!� <use se
tion-name>Output is swit
hed to the se
tion with the name se
tion-name. Furthermore, the previously sele
ted se
tion ispushed on the se
tion sta
k.Se
tion-name is treated as text
ontext. Thus, the name
an be given literally or built by swit
hing to the
ommand
ontext.If the se
tion does not exist then a new se
tion is
reated. The output of this se
tion is printed after allpreviously
reated se
tions.� <use>Output is swit
hed to the default se
tion. Furthermore, the previously sele
ted se
tion is pushed on the se
tionsta
k.� <use *>The topmost se
tion in the se
tion sta
k is popped and output is swit
hed to this se
tion.15Ea
h �le has its own se
tions. Thus, use depends on the
urrent output �le (whi
h has been set with the filema
ro; see se
tion 6.4.3).Ea
h �le has a default se
tion (whi
h has no name). If a �le is
reated, the default se
tion is the only existingse
tion and the se
tion sta
k is empty.The se
tion sta
k is useful to swit
h output temporarily to another se
tion and then swit
hing ba
k to thepreviously a
tive one without a
tually knowing whi
h se
tion was the previously a
tive one.For example, to generate a lex �le using three se
tions
an be pra
ti
al:15The
urrent implementation terminates with a segmentation fault if an attempt is made to pop from the empty sta
k.
26

1 <use regular_definitions>2 <use translation_rules>3 %%4 <use auxiliary_pro
edures>5 %%6 <use *>7 <use *>8 This output goes to regular_definitions910 <use auxiliary_pro
edures>11 void install_id() { ... }12 <use *>The output is divided into four
onse
utive se
tions: The default se
tion �rst, followed by regular definitions,translation rules, and auxiliary pro
edures. The last three lines demonstrate how to use the se
tion sta
k.Here is another example:1 <use bu
ket1>2 <use bu
ket2>3 <use bu
ket3>4 3</>5 <use *>6 2</>7 <use *>8 1</>9 <use *>10 0</>1112 <use bu
ket2>13 22</>14 <use *>1516 <use>17 00</>It generates the following output:expanded file
ount is 1000122236.4.3 Redire
ting Output with fileWhen the ma
ro interpreter starts exe
uting, the generated output is written to the standard output bu�er (stdout).Typi
ally, the generated output will go to a single �le or will be split up into several �les. The file ma
ro providesthis fun
tionality:� <file �le-name>The output bu�er is swit
hed to the bu�er with the name �le-name. Right after interpretation is terminated27

and before smgn terminates, all bu�ers are written to their
orresponding �les. This means that the physi
al�les are not
reated right away and only written if smgn terminates normally.File-name is treated as text
ontext. Thus, the name
an be given literally or built by swit
hing to the
ommand
ontext.If this is the �rst time that output is swit
hed to this bu�er, then an empty bu�er with �le-name is
reated. Ifthe bu�er already exists, the output is appended to it.After ma
ro �le exe
ution stops, all bu�ers are written to disk. If a �le with the name �le-name already exists,it is silently overwritten.� <file>The output bu�er is swit
hed to stdout.Note that every �le
an
onsist of se
tions and that swit
hing to a di�erent �le also restores the state of the se
tionsof that �le (refer to se
tion 6.4.2 for further explanation).A �le is written to the
urrent working dire
tory. The �le name
an also spe
ify a path (e.g., mydir/myfile).Under Unix, it is possible to, for example, redire
t output to stdout by giving /dev/stdout for the �le-name.166.4.4 Text FormattingThis se
tion dis
usses
onstru
ts that
an be used when generating output.6.4.4.1 Newlines� </>Output a newline
hara
ter to the
urrently a
tive output bu�er.(Be
ause of the intermixing of
ommands and text in ma
ro �les, real newlines are not output by default.)The behavior how smgn treats newlines in the ma
ro �les
an be
hanged with the following (pseudo) ma
ro
alls:� <ignore linefeeds>Newlines in the ma
ro �le are ignored in the text
ontext. This means that newlines
an be only generatedwith </>.This is smgn's default behavior.� <noti
e linefeeds>Newlines in the ma
ro �le are output as well if they are en
ountered in a text
ontext.An empty line (i.e., the line
ontains only non-printed whitespa
es) does not
ause the output of a newline.For example, assuming text
ontext, the se
ond line does output a newline, whereas the third line does not:<noti
e linefeeds>\ This
ommand is espe
ially useful to output
ontinuous text without
luttering the ma
ro �le representationwith lots of </>s.16We dis
ourage using these features be
ause they are not portable.
28

6.4.4.2 Indentations The following
ommands
ontrol the indentation (i.e., the number of leading blanks) ofthe output. After every newline the
urrent indentation is output.� </=indent>Set the indentation to indent. A negative value sets the indentation to zero.� </+indent>In
rease the
urrent indentation by indent.� </-indent>De
rease the
urrent indentation by indent. The indentation does not drop below zero.� </0>Text within a pair of </0>s are output without indentation. The �rst </0> sets indentation to zero and these
ond </0> restores the indentation to its previous setting.Indent must be a number. The new setting of the indentation
omes into e�e
t after a newline (in the
orrespondingbu�er) is output.17Here is an example1 # ma
/indent.ma
23 No indentation so far...4 </=4>5 Text with indentation of 4...6 </+2></>7 Now we have two more...8 </0></>No indentation here!</0>9 </-2></>10 Ba
k to 4...11 </>with the
orresponding output:expanded file
ount is 1No indentation so far...Text with indentation of 4...Now we have two more...No indentation here!Ba
k to 4...6.4.4.3 String FormattingBe
ause smgn has no me
hanism to arbitrary modify strings (ex
ept for
on
atenation of them), it provides severalprede�ned string manipulation
ommands.� <!CAPS node>The string denoted by the a

ess path node is
hanged to all upper
ase.� <!CPZ node>Changes node so that unders
ores are eliminated and
hara
ters after unders
ores are
apitalized.17This
ould be
onsidered a bug. 29

� <!LLC node>Changes the �rst
hara
ter to lower
ase.� <!LOWS node>Changes node to all lower
ase.� <!NSPC node>Eliminate spa
es in the string.18� <!SING node>Changes node from plural to singular with the following rules:ies$! y (e.g., spies ! spy)([^s℄)[sS℄$! \1 (e.g., foes ! foe)� <!UNL node>Turns text to lower
ase and puts an underline between
apitalized
hara
ters and their pre
eding
hara
ter;ex
ept for the �rst
hara
ter, whi
h is only
hanged to lower
ase.� <!" node>En
lose the string with quotationmarks.� <!' node>En
lose the string with ti
ks.Note that the above
ommands destru
tively overwrite the string given by the node a

ess path. If you do not wantthat, you
an �rst
opy the string to another node with the set
onstru
t.The follow tables gives a few examples:Before !CAPS !CPZ !LLC !LOWS !NSPC !SING !UNL !" !'SpieS SPIES SpieS spieS spies { Spie spie s "SpieS" 'SpieS'AaaBC AAABC AaaBC aaaBC aaab
 { AaaBC aaa b
 "AaaBC" 'AaaBC'Aa Bb AA BB AaBb Aa Bb aa bb { Aa Bb aa bb " Aa Bb" ' Aa Bb'6.5 Debugging OutputThe following
onstru
ts output information to stderr and are meant for debugging output.6.5.1 e
ho� <e
ho text>Print text to stderr. text is treated as text
ontext. Thus, it is possible to swit
h to the
ommand
ontext.For example, the following turtle ma
ro �le1 # turtle/e
ho.ma
23 <e
ho Name: <turtle.identifier>>outputse
ho.ma
:3: Name: myturtle<e
ho Name: <turtle.identifier>>̂expanded file
ount is 118The
urrent implementation dies with a segmentation fault if the string does not
ontain blanks.30

6.5.2 show� <show node>Print the parse tree an
hored at a

ess path node to stderr. A header is printed as well that shows the
ommand along with its sour
e position.This ma
ro is useful, for example, inside ma
ros de�ntions when you want to see exa
tly the
ontents of a formalparameter for a spe
i�

all.To print the whole parse tree, one
an give the right hand side of the start nonterminal:1 # turtle/show.ma
23 <show turtle>The output of the parse tree
orresponds to lines 3{66 of Figure 1.If an a

ess path denotes a terminal, its
ontents is printed (without a newline). For example1 # turtle/show2.ma
23 <show turtle.identifier>outputsshow2.ma
:3: show
alled<show turtle.identifier>^myturtleexpanded file
ount is 17 Hoof -Spe
i�
 FeaturesThe stru
ture of the SUIF intermediate representation (IR) [2℄ is not that mu
h di�erent from a parse tree. Thus,the SUIF IR graph
an be mapped to a
orresponding smgn parse tree. This mapped \parse tree"
an be traversedand manipulated just like an ordinary one.The SUIF IR graph
onsists of the following
omponents:Ownership links: Every node in the graph has exa
tly one parent node, whi
h \owns" the node.19 Thus, theownership links build an ownership tree. This tree is embedded within the SUIF IR graph.The root of the graph (and of the ownership tree) is a SUIF FileSetBlo
k. The root is impli
ity assumed ina

ess paths.A SUIF node
an
ontain �elds that hold ownership links.Simple �elds: For simple �elds, you follow the ownership link by using the �eld name in the a

ess path.For example, the FileBlo
k node
ontains a �eld symbol table, whi
h holds an ownership link to aSymbolTable node. If the FileBlo
k node is represented by the a

ess path fb, then the SymbolTablenode is denoted by the a

ess path fb.symbol table.Colle
tion type �elds: All �elds with
olle
tion types (su
h as list, sear
hable list, indexed list, andve
tor) represent essentially a list of
hildren. Over this list
an be iterated with the forea
h ma
ro.For example, a StatementList has a �eld statements, whi
h hold a list of Statement nodes. If theStatementList node is represented by the a

ess path sl, then the following
onstru
t iterates over allStatement nodes that are owned by StatementList:19This is true ex
ept for the root node, whi
h is the SUIF FileSetBlo
k.31

1 <forea
h stmt in sl.statements>2 ...3 <endfor>Referen
e links: Referen
e links are similar to ownership links, with the ex
eption that these referen
es are aliasesto other nodes.Thus, the ownership tree
orresponds to the parse tree and the referen
e links
orrespond to aliases introdu
edwith the map
onstru
t (see se
tion 6.2.6.4).Primitive values: Fields that hold values of primtive types (su
h as bool, int, and LString)
onstitute the leafsof the ownership tree. All values are represented as
orresponding strings in the smgn parse tree. For example,boolean values are translated to the strings "true" and "false".For SUIF parse trees, smgn o�ers additional
onstru
ts that make use of the
lass hierar
hy of SUIF nodes. These
onstru
ts are dis
ussed in the following two se
tions.7.1 Dispat
hing of Ma
ro CallsSe
tion 6.2.3 explained how a mat
hing ma
ro de�nition is determined for a ma
ro
all. For SUIF nodes, an additionalmat
hing rule
an be used: Mat
hing of the �rst parameter
an be restri
ted to a spe
i�
 node type. Thus, (single)dispat
hing
an be realized.To realize dispat
hing, the name of the �rst formal parameter is followed by a
olon (:), followed by the name ofthe type that the a
tual must mat
h. The a
tual will mat
h the exa
t type or a subtype of the given type. If morethan one ma
ro de�nition mat
hes, the one with the most \pre
ise" type is
hosen.The following example is taken from the
 text.ma
 �le of the s2
 ba
k end:1 ### Output alignment of Type in bytes23 <def put_byte_alignment_type type:Type>4 /* Cannot
ompute alignment of <!TYPE type> Type */5 <enddef>67 <def put_byte_alignment_type type:QualifiedType>8 <put_byte_alignment_type type.base_type>9 <enddef>1011 <def put_byte_alignment_type type:DataType>12 <eval ([<type.bit_alignment>℄/8)>13 <enddef>1415 <def put_byte_alignment_type type:CPro
edureType>16 <eval ([<type.bit_alignment>℄/8)>17 <enddef>1819 ...2021 <def handle_Expression expr:ByteAlignmentOfExpression parent_expr>22 <put_byte_alignment_type expr.ref_type>23 <enddef>Depending on the type of the �rst a
tual in the put byte alignment type
all (line 22), the ma
ro
all dispat
hesto the most pre
ise type. The topmost ma
ro de�nition (line 3) implements the \default" behavior.32

7.2 Type TestsIn a SUIF IR parse tree, every node (ex
ept for leafs, whi
h
ontain strings) has a
ertain node type.� <!TYPE node>Output the type of the a

ess path node.If this
onstru
t is
alled for a node that
ontains a string, nothing (i.e., the empty string) is output.Node is treated as
ommand
ontext (i.e., it is not surrounded by angle bra
kets).This
an be used to test for the exa
t type of a node, su
h as in the following example:1 <if ([<!TYPE node>℄ == "PointerType")>2 ...3 <endif>� <!ISKINDOF node node-type>Returns the string "true" or "false", depending if the a

ess path node has the type or subtype given innode-type.Node is treated as
ommand
ontext (i.e., it is not surrounded by angle bra
kets).For example, this
onstru
t
an be used for a type test as follows:1 <if ([<!ISKINDOF node CPro
edureType>℄)>2 ...3 <endif>8 HintsA good way to learn smgn is to simply look at the existing ma
ro �les that
ome with the SUIF system. Still, toin
rease the learning
urve, this se
tion provides several hopefully useful hints.Using terminals to distinguish parses: Sometimes terminal symbols are used in alternatives (e.g., line 12 in theturtle grammar). The text node
an then be used to retrieve the mat
hing terminal, for example:1 <if (turn.left_or_right == "left")>2 ...3 <elseif (turn.left_or_right == "right")>4 ...5 <endif>Epsilon rules: One should try to spe
ify epsilon rules as \early" as possible in the grammer.For example,
onsider the following grammer �le for our turtle example:1 # "Wrong" grammar for turtle graphi
s (turtle/wrong.grm)23 <start> ::= <turtle>4 <turtle> ::= turtle <identifier> "{" <
ommands> "}"56 <
ommands> ::= <
ommand> | <
ommand> <
ommands>7 <
ommand> ::= <turn> | <up> | <down> | <forward> |89 <turn> ::= turn <left_or_right> by <verbatim> degrees ;10 <left_or_right> ::= left | right11 <up> ::= up ; 33

12 <down> ::= down ;13 <forward> ::= forward <verbatim> ;Note that the
ommand nonterminal (line 7)
an now expand to nothing. Compared to the original grammar,this one gets rid of the nonterminal
ommand list and looks simpler; so, why not use this one?Here is the a

ompanying forea
h
onstru
t (analogous to forea
h3.ma
 shown in se
tion 6.2.1.2):1 # turtle/forea
h3.wrong.ma
23 <forea
h
md in turtle.
ommands.
ommand>4 <
md.text></>5 <endfor>Besides making the life of the parser more
ompli
ated, this solution has the following nasty drawba
k: Awarning is generated if no turtle
ommands are given, i.e., if the turtle �le looks as follows:1 # Empty turtle program (empty.turtle)23 turtle empty {4 }In this
ase, the
ommands nonterminal expands to nothing and hen
e the interpreter generates the followingwarning:forea
h3.wrong.ma
:4: warning: name
md.text not found<
md.text></>^valid names are emptyexpanded file
ount is 1In order to avoid this problem, you
an, for example, modify the ma
ro �le as follows:1 # turtle/forea
h3.wrong.fix.ma
23 <forea
h
md in turtle.
ommands.
ommand su
h that4 (exists turtle.
ommands.
ommand.text)>5 <
md.text></>6 <endfor>Still, you should refrain from using this grammar and make your life more
ompli
ated.Iterators with
allba
ks: Using an iterator that generates a
allba
k for every element to be pro
essed de
ouplesthe
on
rete parse tree from the a
tion to be performed on a
ertain node in the parse tree. Se
tion 6.2.3.2gives an example.Ma
ros in text
ontext: Several ma
ros expe
t strings, whi
h are given in text
ontext. This feature
an be usedto put
omplex ma
ro instead of simple names, for example:1 # turtle/set2.ma
23 <set result to <if (turtle.identifier == "myturtle")>4 yes5 <else>6 no7 <endif>>89 <result></> 34

Empty versus existent nodes: A node
an be existent in the parse tree, yet empty. To
he
k whether a node nexists use(exists n)To
he
k whether a node exists and is not empty use(exists n.text)This works sin
e the text node is only
reated if the parent node is asso
iated with parsed text.Exe
ute frequently: It is a good idea while
hanging a ma
ro �le to exe
ute it frequently|even after a small
hange. In
ase of a syntax error, smgn never
omplains. Instead, a
ertain part of the ma
ro �le is ignored orsmgn loops in�nitely!For example, the if ma
ro in the following ma
ro �le is missing a
losing angle bra
ket (end of line 4):1 # ma
/syntax_error.ma
23 Before the if</>4 <if ("true")5 Syntax Error (missing "<")</>6 <endif>7 After the if</>In this
ase, smgn skips the if ma
ro (and part of the following output):expanded file
ount is 1Before the iffter the ifHere is another example:1 # turtle/syntax_error.ma
23 <if turtle.identifier == "myturtle">4 Never gets expanded!</>5 <endif>The boolean expression of the if ma
ro is not en
apuslated by round bra
kets. Be
ause of this, the body ofthe ma
ro will never be exe
uted.Su
h bugs
an be extremely hard to tra
e, expe
ially if you made lots of
hanges in your ma
ro �le sin
e thelast test run.20Debugging output: Do not a

idently generate debug output for ma
ro
alls that are supposed to \return" aboolean result. . .9 Dis
ussion of smgn's Approa
hWe already outlined smgn's appli
ation domain in se
tion 2. In the following, we try to brie
y evaluate smgn'sstrengths and weaknesses.20Using the smgn ema
s mode helps somewhat in
at
hing these kind of errors.
35

9.1 Strengths� Very well suited for rapid prototyping of domain-spe
i�
 languages.� Uni�ed
on
epts for pro
essing of parse trees generated from a grammar spe
i�
ation and from a SUIF IRgraph. Thus, it is not ne
essary to learn two di�erent
on
epts when working on SUIF.� Simple and intuitive; thus easy to learn.219.2 Weaknesses� The grammar spe
i�
ation and the ma
ro
ode that traverses the resulting parse tree are tighlty
oupled. Thus,
hanges in the grammar usually mean
hanges in the ma
ro
ode.22� It is not possible to abstra
t from the
on
rete syntax given by the grammar by building an abstra
t syntaxtree.� There is no syntax
he
king of the ma
ro �les. For syntax errors, smgn typi
ally fails silently (skipping part ofthe ma
ro
ode).� There is no good support to generate error messages. Most notably, no line number information is present inthe parse tree.� It is not possible to
all external programs (\shell es
ape").� There is no high-level spe
i�
ation that des
ribes parse tree transformations.Even though by looking at the lists one
ould get the impression that smgn's weaknesses outweight its bene�ts,most weaknesses are missing fun
tionality that is in pra
ti
e not
ru
ially needed.A Turtle ExampleThis example shows how to spe
ify a grammar and ma
ro �le for a simple domain spe
i�
 language,
alled turtle. Itis used as a running example in this manual.The turtle language is a small s
ripting language to draw a pi
ture with turtle graphi
s. Its meaning should beintuitive to understand.A.1 Grammar File (turtle.grm)The following grammar is used to
onstru
t the parse tree of a turtle program:1 # Toy grammar for turtle graphi
s (turtle/turtle.grm)23 <start> ::= <turtle>4 <turtle> ::= turtle <identifier> "{" <
ommand_list> "}"56 <
ommand_list> ::= <
ommands> |78 <
ommands> ::= <
ommand> | <
ommand> <
ommands>9 <
ommand> ::= <turn> | <up> | <down> | <forward>1011 <turn> ::= turn <left_or_right> by <verbatim> degrees ;21This might be an enthusiasti
 overstatement, but hopfully this statement is true when one uses this manual!22Using
allba
ks
an mitigate this problem. 36

12 <left_or_right> ::= left | right13 <up> ::= up ;14 <down> ::= down ;15 <forward> ::= forward <verbatim> ;A.2 Sample Input File (myturtle.turtle)The following example program is used by all turtle ma
ros des
ribed in this manual:1 # Toy turtle program (turtle/myturtle.turtle)23 turtle myturtle {4 down;5 forward 10;6 turn left by -90 degrees;7 forward 10;8 }A.3 Ma
ro File (ps.ma
)The following ma
ro �le is a bigger and
omplete example. It generates
orresponding PostS
ript output for theturtle
ommands.1 # turtle/ps.ma
23 # Introdu
ed nodes:4 # angle (
urrent orientation of turtle)5 # pen ("up" or "down")6 # Temporary nodes:7 # newangle89 ### Ma
ro Definitions1011 # Iterate over the
ommand list with
allba
k12 <def iter_
ommands
allba
k p1 p2 p3>13 <forea
h
md in turtle.
ommand_list.
ommands.
ommand>14 <[<
allba
k>℄
md p1 p2 p3>15 <endfor>16 <enddef>1718 # Depending on the a
tual
ommand,
all the
orresponding
allba
k19 <def handle_
ommand
md
allba
k>20 <if (exists
md.turn)>21 <[<
allba
k>℄_turn
md.turn.left_or_right.text
md.turn.verbatim>22 <elseif (exists
md.up)>23 <[<
allba
k>℄_up>24 <elseif (exists
md.down)>25 <[<
allba
k>℄_down>26 <elseif (exists
md.forward)>27 <[<
allba
k>℄_forward
md.forward.verbatim>28 <else>29 %%% Error: Unknown
ommand:
md.text</>37

30 <endif>31 <enddef>3233 <def handle__turn left_or_right newangle>34 <if (left_or_right == "left")>35 # Reverse the sign36 <set newangle to <eval (0 - newangle)>>37 <endif>3839 # Compute new angle40 <set angle to <eval (angle + newangle)>>41 <enddef>4243 <def handle__up>44 <set pen to up>45 <enddef>4647 <def handle__down>48 <set pen to down>49 <enddef>5051 <def handle__forward length>52 # Compute new position of pen:53 # sin(angle) * length +
os(angle) * length54 <angle> sin</>55 <length> mul</>56 <angle>
os</>57 <length> mul</>5859 <if (pen == "up")>60 # Change position without drawing61 rmoveto</>62 <elseif (pen == "down")>63 # Draw line64 rlineto</>65 <else>66 %%% Error: `pen' neither "up" nor "down".</>67 <endif>68 <enddef>6970 ### Start of exe
ution7172 # Generated posts
ript output goes to `out.ps'.73 <file out.ps>7475 # At startup, the turtle's pen is up76 <set pen to up>7778 # At startup, the turtle points north.79 <set angle to 0>80 38

81 4 setlinewidth</>82 newpath</>83 200 200 moveto</>8485 <iter_
ommands "handle_
ommand" "handle_">8687 stroke</>88 showpage</>This ma
ro
ode makes extensive use of
allba
ks. If you do not like this style, you
an of
ourse \inline" the
allba
ks and end up with a more monolithi
 style.The generated
ode is written to out.ps. You
an view the result of the generated
ode as follows:smgn turtle.grm myturtle.turtle ps.ma
 ; gs out.psA.4 Generated PostS
ript OutputIf you runsmgn turtle.grm myturtle.turtle ps.ma
then the following PostS
ript
ode is generated:1 4 setlinewidth2 newpath3 200 200 moveto4 0 sin5 10 mul6 0
os7 10 mul8 rlineto9 90 sin10 10 mul11 90
os12 10 mul13 rlineto14 stroke15 showpage

39

B Command Summary� # 4.1.2, p. 5A line starting with a # is a
omment line.� <>Allows to
ontinue text on the next line. After <>, newlines and whitespa
es are ignored.� \
har 6.1, p. 9In text
ontext, the single
hara
ter
har is es
aped.� <node-a

ess-path> 6.4.1, p. 25Outputs the
ontents of a node in the parse tree spe
i�ed by the a

ess path.� <ma
ro-name a
tual1 . . . a
tualN> 6.2.3, p. 15Expands (or
alls) a ma
ro.� </> 6.4.4.1, p. 28Output a newline
hara
ter to the
urrently a
tive output bu�er.� </=indent> 6.4.4.2, p. 29</+indent></-indent></0>Text indentation.� <?param text> 6.2.3.1, p. 16Che
ks if the formal parameter param is bound to a value. If so, text is expanded.� <!CAPS node> 6.4.4.3, p. 29<!CPZnode><!LLC node><!LOWS node><!NSPC node><!SING node><!UNL node><!" node><!' node>Destru
tive text formatting of node.� <!TYPE node> 7.2, p. 33<!ISKINDOF node node-type>Type tests for SUIF parse trees.� <def name formal1 . . . formalN> . . . <enddef> 6.2.2, p. 14 (7.1, p. 32)De�nes a new ma
ro.� <e
ho text> 6.5.1, p. 30Print (debugging) text to stderr.� <eval(expr)> 6.2.5.4, p. 21Outputs the result of the expression expr.� <endma
> 6.2.1.3, p. 14Immediately terminates expansion of a ma
ro de�nition.40

� (first id) 6.2.1.2.2, p. 13This predi
ate is \true" if the
urrent list element (denoted by id) is the �rst element that is pro
essed in the
orresponding forea
h ma
ro.� <forea
h id in tree-node su
h that (bool-expr)> . . . <endfor> 6.2.1.2, p. 10This
onstru
ts iterates over a list. The optional su
h that
lause in this
onstru
t
an be used to put arestri
tion on the sele
ted list elements.� <if (bool-expr)> . . . 6.2.1.1, p. 10<elseif (bool-expr)><elseif (bool-expr)> . . .<else> . . .<endif>� (exists node) 6.2.5.1, p. 19Predi
ate that
he
ks whether the given node exists in the parse tree.� <ignore linefeeds> 6.4.4.1, p. 28� <in
lude ma
ro-�le-name> 6.2.4.1, p. 18Start interpretation of given ma
ro �le.� (last id) 6.2.1.2.2, p. 13This predi
ate is \true" if the
urrent list element (denoted by id) is the last element that is pro
essed in the
orresponding forea
h ma
ro.� <let id be node> . . . <endlet> 6.2.6.3, p. 23The name id is aliased to the a

ess path node.� <map node1 to node2> 6.2.6.4, p. 24The existing a

ess path node1 is aliased with node2.� <noti
e linefeeds> 6.4.4.1, p. 28� <parse �le-name> 6.2.4.2, p. 18Start interpretation of the given (internal) bu�er.� <pos id> 6.2.1.2.3, p. 13Ouput the
urrent number of iterations of the
orresponding forea
h ma
ro.� <set node to str> 6.2.6.1, p. 22De�nes a (new) node in the parse tree with the a

ess path node and the
ontents str.� <show node> 6.5.2, p. 31Print the parse tree an
hored at a

ess path node to stderr.� <use se
tion-name> 6.4.2, p. 26Output is swit
hed to the se
tion with the name se
tion-name.<use>Output is swit
hed to the default se
tion.<use *>Pop se
tion from se
tion sta
k.
41

C Command LineInvo
ation of smgn without any parameters prints the
ommand line options:usage is smgn <options> <grammar> <sour
e> <ma
ro file 1> <ma
ro file 2> ...options are: -p print result of parsing sour
e-d debug ma
ro expansion-D<name>=<value> define a name for ma
ro expansion-I<dire
tory> add dire
tory for in
ludesThe ma
ro �les are exe
uted in the order that they appear on the
ommand line.For example, the turtle ma
ro �les are exe
uted as follows:smgn turtle.grm myturtle.turtle ma
ro-�le.ma
Command line options:-p: The
omplete parse tree is printed that has been generated by reading the input �le (before the ma
ro �les areexe
uted). An example of su
h a parse tree output is given in Figure 1.-d: Invokes the intera
tive, built-in debugger (right before the ma
ro �les are exe
uted). Typing \h" or \?" printsa
ommand summary of the debugger.23-Dname=str: Before exe
ution starts, the node name is put at the root of the parse tree with the string value str.The name must not
ontain a dot, whi
h means that only
hild nodes of the (impli
it) root
an be
reated. Asusual, the spe
i�ed string
an be a

essed in a ma
ro �le with<name>If the same name is given multiple times on the
ommand line, the value of the �rst de�nition is
hosen.-Idir: Add the dire
tory dir to the list of dire
tories to be sear
hed when looking for a ma
ro �le to exe
ute. Bydefault, the
urrent dire
tory is the only one that is sear
hed.The list of dire
tories is used when sear
hing for ma
ro �les given by the
ommand line as well as by the inputma
ro.Referen
es[1℄ SUIF2 Home Page, http://suif.stanford.edu/suif/suif2.[2℄ Gerald Aigner, Amer Diwan, David L. Heine, Moni
a S. Lam, David L. Moore, Brian R. Murphy, ConstantineSapuntzakis, The Basi
 SUIF Programming Guide, November 1999.[3℄ Bauhaus Home Page, http://www.informatik.uni-stuttgart.de/ifi/ps/bauhaus.
23The debugger is not very intuitive to use and explaining it in more detail would be a good idea, but this manual is already too long. . .42

