
The smgn Referene ManualHolger M. KienleUniversity of Stuttgart, Germanykienle�s.usb.eduTehnial Report TRCS00{22Department of Computer SieneUniversity of CaliforniaSanta Barbara, CA 93106http://www.s.usb.edu/TRsNovember 2000AbstratThis doument explains the SUIF Maro Generator (smgn). smgn is a a grammar-based tool that allows toparse an input �le aording to a grammar spei�ation. The resulting parse tree an then be easily navigatedand manipulated with a spei� maro language.Even though smgn has been spei�ally written for the SUIF system, its design is general enough to be usefulfor the translation of domain spei� languages. Furthermore, sine smgn is interpretative and easy to grasp, it iswell suited for rapid prototyping.Beause the maro language is easiest to grasp with onrete examples, we give at least one for every majoronstrut. Stritly speaking, the nature of the manual is probably rather a mixture of tutorial and referene guide.Please help to improve this manual by sending orretions and omissions to kienle�s.usb.edu.AknowledgmentsThanks to the members of the SUIF team at Portland Group, In. (PGI) and Stanford University for making smgnavailable|and for making it general enough to be useful outside of the SUIF-ontext. (The author is not part ofthe SUIF team and had no part in oding smgn; however, he got upset at the lak of deent doumentation.)As a starting point for this manual, the original (3-page) Smgn Referene Manual was used.

1

Contents1 Introdution 42 The Big Piture 43 Overview of smgn 44 The Parser 54.1 The Grammar Spei�ation . 54.1.1 Pseudo Nonterminals . 54.1.2 Comments . 54.2 The Parser . 54.3 The Parse-Tree . 65 Toy Grammar 66 The Maro Language 76.1 Text versus Command Context . 96.2 Commands . 106.2.1 Control Flow . 106.2.1.1 if . 106.2.1.2 foreah . 106.2.1.2.1 Nested Reursions . 126.2.1.2.2 first/last-Prediate . 136.2.1.2.3 pos . 136.2.1.2.4 ? Aess Path Wildard . 146.2.1.3 endma . 146.2.2 Maro De�nition with def . 146.2.3 Maro Calls . 156.2.3.1 Valueless Parameters and <?. . . > . 166.2.3.2 Callbaks . 166.2.3.3 Calls with Return Values . 176.2.4 Expansion of Maro Files . 186.2.4.1 inlude . 186.2.4.2 parse . 186.2.5 Expressions and Data Types . 196.2.5.1 Booleans . 196.2.5.2 Numbers . 206.2.5.3 Strings . 216.2.5.4 eval . 216.2.6 De�nitions and Aliases . 226.2.6.1 Node De�nitions with set . 226.2.6.2 Table De�nitions with set . 226.2.6.3 Aliases with let . 236.2.6.4 Aliases with map . 246.3 Text Substitution with [. . . ℄ . 256.4 Text Handling . 256.4.1 Content of Parse Tree Nodes . 256.4.2 Text Setions with use . 266.4.3 Redireting Output with file . 276.4.4 Text Formatting . 282

6.4.4.1 Newlines . 286.4.4.2 Indentations . 296.4.4.3 String Formatting . 296.5 Debugging Output . 306.5.1 eho . 306.5.2 show . 317 Hoof -Spei� Features 317.1 Dispathing of Maro Calls . 327.2 Type Tests . 338 Hints 339 Disussion of smgn's Approah 359.1 Strengths . 369.2 Weaknesses . 36A Turtle Example 36A.1 Grammar File (turtle.grm) . 36A.2 Sample Input File (myturtle.turtle) . 37A.3 Maro File (ps.ma) . 37A.4 Generated PostSript Output . 39B Command Summary 40C Command Line 42

3

1 IntrodutionThis doument explains the SUIF Maro Generator (smgn). smgn is a a grammar-based tool that allows to parse aninput �le aording to a grammar spei�ation. The resulting parse tree an then be easily navigated with a spei�maro language. While navigating the parse tree, output an be onveniently generated.In the SUIF system, smgn is used to automatially translate from the Hoof representation into C++ ode. (Forfurther information refer to The Basi SUIF Programming Guide [2℄.) The C/C++ bak end (s2) makes also useof the maro language proessor.This referene manual introdues smgn so that programmers� an better understand the smgn-spei� parts of the SUIF system and make hanges to them.For example, the s2 bak-end is written with smgn. To �x bugs or to extend the bak-end requires a fairlygood knowledge of smgn. Furthermore, development of a new bak-end (with textual output) is probably mostonveniently done with smgn.� an utilize smgn for their own projets (whih must not be neessarily done within the ontext of SUIF).For example, the Bauhaus projet at the University of Stuttgart [3℄ uses smgn to translate ode written in adomain-spei� spei�ation language to Ada95. (This manual originated as part of this e�ort.)2 The Big PitureEven though smgn has been spei�ally written for the SUIF system, it is also useful in general for the translationof domain spei� languages (DSLs). In fat, this is the primary motivation to explain it in more detail. Typially,a DSL an be expressed by a omparably small grammar and the output transformations are rather simple and intextual form (e.g., a program in another programming or desription language). The Hoof spei�ation [2℄ is suhan example.Unfortunately, DSLs tend to hange frequently throughout their lifetime. Espeially in the early design andimplementation phase, typially frequent hanges to the DSL's grammar and the generated output are neessarybefore a stable point is reahed. For example, grammar hanges are aused by additional requirements and thedisovery that the grammar is too strit or too lax. Thus, the ability of rapid prototyping seems to be an importantfator when developing a new DSL.On the other hand, a typial approah for building a DSL translator is to use standard ompiler tools, suhas lex and ya; but this approah is not well suited for rapid development and involves tedious work, suh as amanual onstrution of the (abstrat) syntax tree. There are spei� tools available that assist in the design andimplementation of DSLs, but they often are rather omplex and diÆult to learn.smgn, however, is well suited for rapid prototyping. There are no lengthy modify-ompile-run yles. Similar to aninterpreted languages, the programmer an make minor modi�ations, run the maro interpreter, and immediatelylook at the result. Furthermore, smgn is fairly intuitive and thus easy to learn.To summarize, we believe that smgn is useful for rapid prototyping of small DSLs that require a rather simpletransformation to textual output. smgn does not use fany formalisms (suh as formal semantis), but helps you toget the job done.3 Overview of smgnAs mentioned before, smgn is a general tool that is parameterized by� a grammar �le (ontains the grammar spei�ation).� a text �le (ontains the atual input).� maro �les (ontain maro language ode). 4

When smgn is invoked, it �rst reads the grammar �le and then parses the text �le with the obtained grammarspei�ation. During the parse a parse tree is onstruted. If no maro �les are present, exeution stops; otherwise,the maro �les are read in and the maro proessors starts to interpret them in sequene. Typially, the maro �lesontain ode that traverse the parse tree and generate output depending on the information obtained from the parsetree. Thus, the same grammar spei�ation and input an yield di�erent outputs, depending on the used maro �les.In the following, the parser (see setion 4) and the maro language (see setion 6) are explained in detail.4 The Parser4.1 The Grammar Spei�ationThe grammar spei�ation is similar to BNF, thus no repetitions, optionals, or other syntati sugar is allowed. Itonsists of produtions of the form<lhs> ::= alternative1 | ...| alternativenAn alternative is a (possibly empty) sequene of terminals and nonterminals. The names of nonterminals areenapsulated in angle brakets (e.g., <x>). Terminal symbols are written literally, but they an be also enapsulatedwith double quotes ("). If speial haraters are used in terminals (e.g., <, >, or |), they must be enapsulated.The start nonterminal of the grammar is the left-hand-side of the �rst prodution.4.1.1 Pseudo NonterminalsThere are speial prede�ned pseudo-nonterminals, whih may be used in the grammar:Pseudo Nonterminal Purpose<identifier> Used to math identi�ers.<verbatim> Used to math arbitrary text.The <verbatim> nonterminal mathes any text up to, but not inluding, the terminal harater that must appearto the right of <verbatim> in the alternative. This feature is useful to apture text that is not supposed to be parsedand subsequently analyzed, but written out later in its original form.The <identifier> nonterminal mathes anything up to, but not inluding, the point that still onstitutes a valididenti�er. A valid identi�er an ontain digits, letters (upper and lowerase), and undersores in any order.4.1.2 CommentsEvery language should allow omments. Usually omments are not spei�ed by the grammar itself, but handleddiretly in the sanner. In order to make life easier, the parser has omments already built in. Any line starting witha hash (#) is onsidered a omment. Leading white spaes before a hash are allowed. In fat, omments are identialfor grammar, text, and maro �les.4.2 The ParserThe parser is implemented as a straightforward bak-traking parser. This means that grammars that are not LLand not LALR an be handled, whih frees the grammar writer from the task to take these onstraints into aountwhen developing the grammar. On the other hand, if the grammar and the input fore the parser to do a lot ofbak-traking, the performane may su�er signi�antly.For example, the following grammar may ause a lot of baktraking<if_stat> ::= if <expression> then <statement> endif| if <expression> then <statement> else <statement> endif5

beause the parser has to bak-trak whenever a if-then-else onstrut is parsed. Parsing a if-then onstrutwithout the else part does not result in bak-traking. In pratie, it is probably best to try to write a grammar thatis lose to LL(1).For further information about the limitations of the urrent parser (espeially the bak-traking algorithm) pleaseonsult the following �le:$NCIHOME/suif/suif2/tools/smgn/README.4.3 The Parse-TreeWhen a parse is suessful, a tree is generated representing the parsed text. In this tree, all terminals are removed.1Eah node on the tree ontains a number of hildren, whih are the names of the nonterminals mathed by theprodution.Node names|in the following simply alled names| are used by the maro language to speify a ertain subtreestarting from a ertain tree node. Sine names orrespond to nonterminals, all nonterminals in a prodution musthave unique names in order to unambiguously speify the subtrees.2Aessing of hildren of a ertain node is performed by the dot operator :x.yaesses hild y of parent x.Conatenation of names with the dot operator yields an aess path (refer to setion 6.4.1).5 Toy GrammarThe following grammar example spei�es the syntax for a small sripting language for turtle graphis:1 # Toy grammar for turtle graphis (turtle/turtle.grm)23 <start> ::= <turtle>4 <turtle> ::= turtle <identifier> "{" <ommand_list> "}"56 <ommand_list> ::= <ommands> |78 <ommands> ::= <ommand> | <ommand> <ommands>9 <ommand> ::= <turn> | <up> | <down> | <forward>1011 <turn> ::= turn <left_or_right> by <verbatim> degrees ;12 <left_or_right> ::= left | right13 <up> ::= up ;14 <down> ::= down ;15 <forward> ::= forward <verbatim> ;Note that the right hand side of the ommand list prodution (line 6) has a \|" at the end, whih means thatthis prodution an expand to nothing.Beause it is not possible to expliitly express numbers, we use the <verbatim> nonterminal (lines 11 and 15) tomath them.3 This means, of ourse, that our grammar is less restritive than we would like to have.We an now write a turtle program|whih will be used in the following as a running example|and parse it withsmgn.1Atually, they are still present in the text hild node of the enlosing nonterminal, but are not diretly aessible.2In pratie, if more than one nonterminal with the same name exists in a prodution, the �rst is hosen when the subtree is seleted.The other subtrees are simply not aessible.3If we only wanted to math positive numbers, we ould have also used the <identifier> nonterminal.6

1 # Toy turtle program (turtle/myturtle.turtle)23 turtle myturtle {4 down;5 forward 10;6 turn left by -90 degrees;7 forward 10;8 }For now, smgn will only parse the program and report syntax errors. Later on, we will show how to outputpostsript ode after a suessful parse (see setion A.3).If you run smgn with the -p option (see setion C), smgn prints the parse tree. Figure 1 shows an exerpt of theparse tree for the previous example. The output has the following shema:fNamedList type = ParentNodeChildNode1=>ChildNoden=> . . .text=> . . .gThe hildren of every nonterminal (ParentNode) are (reursively) printed followed by a speial hild node (alledtext) that ontains the input text parsed by the ParentNode. The text node exists only for nonterminals thatdid atually math some input text and it never exists for the pseudo-nonterminals identifier and verbatim (seesetion 4.1.1). Immediate right-reursive rules, suh as<ommands> ::= <ommand> | <ommand> <ommands> (f. toy grammar, p. 6, line 8)are represented as (at) lists.46 The Maro LanguageThe maro proessor interprets the maro �les. Typially, maro �les generate output to multiple �les while traversingthe parse tree.The maro language has two ontexts:� The text ontext is used to output text to the urrent output bu�er. Text written in this ontext is diretly(i.e., unhanged) written to the output bu�er. Several exeptions to this rule exist, most notably a way toswith to ommand ontext.� In text ontext, the ommand ontext is ativated with a starting angle braket (<) and terminated with alosing angle braket (>). Most notably, in the ommand ontext it is possible to aess nodes in the parsetree.Both ontexts are disussed in more detail in setion 6.1.When the interpreter starts to proess the maro �le, it is in text ontext. Thus, running the following maro �le1 # My first maro file (turtle/first.ma)23 This text is diretly written to stdout...</>will output4This attening is performed beause the maro generator allows to iterate over these nodes onveniently with a speial foreah looponstrut. 7

1 {NamedList type = start2 turtle=>3 {NamedList type = turtle4 identifier=>myturtle5 ommand_list=>6 {NamedList type = ommand_list7 ommands=>8 {MaroListObjet type = ommands910 {NamedList type = ommands11 ommand=>12 {NamedList type = ommand13 down=>14 {NamedList type = down15 text=>down;16 }1718 text=>down;19 }2021 text=>down;22 }2324 [...℄2526 {NamedList type = ommands27 ommand=>28 {NamedList type = ommand29 forward=>30 {NamedList type = forward31 verbatim=>1032 text=>forward 10;33 }3435 text=>forward 10;36 }3738 text=>forward 10;39 }4041 }42

43 text=>down;44 forward 10;45 turn left by -90 degrees;46 forward 10;4748 }4950 text=>turtle myturtle {51 down;52 forward 10;53 turn left by -90 degrees;54 forward 10;55 }56 }5758 text=>5960 turtle myturtle {61 down;62 forward 10;63 turn left by -90 degrees;64 forward 10;65 }66 }

Figure 1: Example parse tree (generated with -p option)
8

expanded file ount is 1This text is diretly written to stdout...followed by a newline if you run it, for example, with the turtle grammar and the demo text �le give in setion 5 (oralternatively setions A.1 and A.3). The �rst line is output by smgn and should not bother us for now.The next example makes use of the ommand ontext to print the <identifier> nonterminal that follows theturtle token (f. line 4 of the turtle grammar �le):1 # My seond maro file (turtle/seond.ma)23 Name of the turtle program: <turtle.identifier></>The generated output readsexpanded file ount is 1Name of the turtle program: myturtleThe onstrut \turtle.identifier" is used to denote a ertain node in the parse tree. The �rst item (turtle)denotes the root of the parse tree. Note that the root is determined by the right side of the start nonterminaland not the start nonterminal itself (whih is start, line 3). The seond item denotes a hild of turtle. Theturtle nonterminal (line 4) has two (potential) hildren: identifier and ommand list. Our example selets hildidentifier.The following setion explain the text and ommand ontext in more detail.6.1 Text versus Command ContextAs mentioned before, the text ontext is used to output raw text uninterpreted to the urrent output bu�er. Thefollowing exeptions exist for this rule:� Newlines are ignored. (This is the default behavior and an be hanged; see setion 6.4.4.1.)� Starting and ending whitespaes are ignored. This is useful to indent the output text in the maro �le withouta�eting the produed output.� Comments (introdued with a #) are not printed.� Single haraters an be esaped with a preeding bakslash (e.g., \x). This is espeially useful if you want toprint a hash or blank at the beginning of a line. Furthermore, to print an opening angle braket it is neessaryto esape it; otherwise smgn interprets it as the beginning of the ommand ontext.5� Esape to the ommand ontext: Text starting with an angle braket is interpreted as the beginning of aommand ontext (see below) and thus not printed literally.When the interpreter starts to proess the maro �le, it is in text ontext and the urrent output bu�er is stdout.(Refer to setion 6.4.3 for how to hange the output bu�er.)The ommand ontext is entered with an (un-esaped) starting angle braket (<). One has the following onstrutsavailable in ommand ontext:� Commands:Certain ommands onsist of multiple tags (all given between angle brakets). An example of suh a ommandis <if> . . . <endif>.Other ommands onsist only of a single pair of angle brakets, for example5Stritly speaking, this is not always neessary. For example, an angle braket followed by a blank need not be esaped.9

<set x to foo> or <ignore linefeeds>.� Node aesses:The ontents of a node an be printed by giving an aess path (see setion 6.4.1) to that node. The path anbe absolute, by giving the root node, or relative by starting with a name that represents a node in the parsetree. We have already seen an example for an absolute aess path before, namely<turtle.identifier>It is not an error to expand a node that does not exist. If one does this, nothing is output; you will get awarning message instead.If a �eld is expanded that does not end with a printable node then nothing is output. For example, both<turtle> and <turtle.ommand list>expand to nothing.6.2 Commands6.2.1 Control Flow6.2.1.1 ifThe if maro omes in several avors:� <if (bool-expr)> . . . <endif>The text inside the onstrut is only expanded if the boolean expression is \true."� <if (bool-expr)> . . . <else> . . . <endif>The text after the <if> is expanded if the boolean expression is \true;" otherwise the text after the <else> isexpanded.� <if (bool-expr)> . . .<elseif (bool-expr)><elseif (bool-expr)> . . .<else> . . .<endif>The semanti should be intuitively lear without further explanation.Boolean expressions are explained in setion 6.2.5.1.6.2.1.2 foreahThe foreah maro allows iteration over a at list. Suh lists are reated by immediate right-reursive grammarrules of the following form:6<lhs> ::= <element> | <element> <lhs>The parser automatially attens the hierarhial struture into an order-preserving list that is attahed to the parentnode lhs. As a result of the attening, all list elements are attahed as hildren to lhs. All these hild nodes haveidential names, namely element (and thus an only be aessed with the foreah maro).The maro omes in two avors:� <foreah id in tree-node > . . . <endfor>This onstruts iterates over a list who is attahed at the parent tree-node. A referene that points to theurrent node in the list is assigned to id . Note that id does not represent the urrent node, but rather areferene to the urrent node. Thus, the urrent node is aessed with6Currently exatly this form is required! 10

id.elementFor example, the following turtle maro �le iterates over all ommands and prints their textual representation:1 # turtle/foreah.ma23 <foreah md in turtle.ommand_list.ommands>4 <md.ommand.text></>5 <endfor>This yields the following output:expanded file ount is 1down;forward 10;turn left by -90 degrees;forward 10;In the above example, the given tree-node was the atual parent of the node of the list (i.e., orresponding tolhs). It is also possible to \reah into" the list for the traversal by giving an aess path that goes beyondthe parent node. If a ertain list element does not have the spei�ed aess path, it is ignored. The followingexample uses an aess path that only reahes list elements that represent a turn ommand:1 # turtle/foreah2.ma23 <foreah md in turtle.ommand_list.ommands.ommand.turn>4 <md.text></>5 <md.verbatim></>6 <endfor>Hene the following output is generated:expanded file ount is 1turn left by -90 degrees;-90In this ase md is indeed the node spei�ed by the aess path and not a referene to it! Hene our �rstexample an be rewritten more onveniently as:1 # turtle/foreah3.ma23 <foreah md in turtle.ommand_list.ommands.ommand>4 <md.text></>5 <endfor>� <foreah id in tree-node suh that (bool-expr)> . . . <endfor>The suh that lause in this onstrut an be used to put a further restrition on the seleted list elements.The urrent list element is skipped if bool-expr evaluates to \false." The boolean expression an ontain theurrent list element (i.e., id).For example, the following ode generates the same output as the seond foreah example (foreah2.ma):1 # turtle/suhthat.ma23 <foreah md in turtle.ommand_list suh that (exists md.ommands.ommand.turn)>4 <md.ommands.ommand.turn.text></>5 <md.ommands.ommand.turn.verbatim></>6 <endfor> 11

Another example is the seletion based on the value of a ertain node|in this ase the verbatim node of theforward ommand:1 # turtle/suhthat2.ma23 <foreah fwd in turtle.ommand_list.ommands.ommand.forward4 suh that (fwd.verbatim == "10")>5 <fwd.text></>6 <endfor>The following output is generated:expanded file ount is 1forward 10;forward 10;To summarize, the foreah maro in its simplest form proesses all elements in a list. The seletive proessing oflist elements an be ahieved with two tehniques: (1) giving an aess path that goes beyond the parent node and(2) introduing a suh that lause.6.2.1.2.1 Nested Reursions The foreah onstruts an also handle nested lists. For example, the fol-lowing produtions de�ne an outer list that ontains an inner list:1 <start> ::= <outers>2 <outers> ::= <outer> | <outer> <outers>3 <outer> ::= "{" <inners> "}"4 <inners> ::= <inner> | <inner> <inners>5 <inner> ::= "*"This grammar allows to parse input suh as{ * * * } { * }To iterate over all of the innermost nested list elements, you an write:1 <foreah elem in outers.outer.inners.inner>2 Handle _all_ *'s here...3 <endfor>Alternatively, you an use two nested foreah onstruts:1 <foreah oelem in outers.outer>2 Handle { here...3 <foreah ielem in oelem.inners.inner>4 Handle *'s of urrent list here...5 <endfor>6 Handle } here...7 <endfor>The latter is more useful, if one wants to distinguish the innermost lists.
12

6.2.1.2.2 Prediates Inside the foreah maros the speial prediates first and last an be used:� (first id)This prediate is \true" if the urrent list element (i.e., id) is the �rst element that is proessed in the or-responding foreah maro. Note that the �rst proessed element is not neessarily the �rst element in thelist.� (last id)This prediate is \true" if the urrent list element (i.e., id) is the last element that is proessed in the or-responding foreah maro. Note that the last proessed element is not neessarily the last element in thelist.If these ommands are used outside a foreah maro, they have no e�et.The following example makes use of both prediates:1 # turtle/firstlast.ma23 <foreah fwd in turtle.ommands.ommand.forward>4 <if (first fwd)>5 first:\ <>6 <endif>7 <if (last fwd)>8 last:\ <>9 <endif>1011 <fwd.text></>12 <endfor>The foreah onstrut restrits the list to two items:expanded file ount is 1first: forward 10;last: forward 10;6.2.1.2.3 pos Inside the foreah maros the pos maro an be used:� <pos id>Output the urrent number of iterations of the foreah maro with the urrent list element id . The �rstiteration is denoted by 0.If pos is used outside a foreah maro, it has no e�et.For example, the following turtle maro �le1 # turtle/pos.ma23 <foreah md in turtle.ommand_list.ommands.ommand.forward>4 <pos md>5 : <md.text></>6 <endfor>outputsexpanded file ount is 10: forward 10;1: forward 10; 13

6.2.1.2.4 ? Aess Path Wildard So far, we used the foreah onstrut to iterate over lists. However,the onstrut an be also used to iterate over a node's hildren by means of giving a wildard (?) in the tree-nodeaess path.It is only possible to give a single wildard in the aess path and the path must not start with a wildard.The wildard is espeially onvenient to iterate over tables that have been onstruted with the set onstrut(see setion 6.2.6.2).Here is a simple example1 # ma/wildard.ma23 <set x[a℄ to a>4 <set x[b℄ to b>5 <set x[℄[a℄ to a>6 <set x[℄[b℄ to b>7 <set x[d℄ to d>89 <foreah value in x.?>10 <value></>11 <endfor>12 ---</>13 <foreah value in x.?.b>14 <value></>15 <endfor>16along with the generated output:abd---bNote, that the �rst foreah mathes x[℄ only one (at the third iteration) and does not generate output for thisnode sine it does not denote a string.6.2.1.3 endmaThe <endma>maro immediately terminates expansion of a maro de�nition. If the maro is alled at the outermostsope (i.e., not during maro expansion) then interpretation of this maro �le is terminated.This maro is most useful in ombination with the if maro to stop expansion of the urrent maro de�nition ifa ertain ondition is met.6.2.2 Maro De�nition� <def name formal1 . . . formalN> . . . <enddef>De�nes a new maro with the name name. The formal parameters are listed after the maro's name. (Notethat no ommas are used to list the formals.) The formal parameter names are known within the maro bodyand an be used in ommand ontext like node names. At the beginning of the maro body, the interpreter isin text ontext.After the new maro is de�ned, it an be alled by using its name (refer to setion 6.2.3).14

Maros are identi�ed by their name and the number of their parameters. Thus, it is possible to de�ne maros thathave the same name but di�er in the number of their parameters.If a new maro is de�ned that has the same name and the same number of formal parameters as a previouslyde�ned maro, the new maro replaes the previously de�ned one. In this ase, no warning is given!It is possible to have nested maro de�nitions (i.e., a maro de�nition within another maro de�nition). However,nested maros have global visibility, i.e., one a maro de�nition has been proessed, it an be alled from anywhere.6.2.3 Maro Calls� <name atual1 . . . atualN>Expands (or alls) a maro with the name name. If a maro with suh a name does not exist, a warning isgiven and the all is ignored.The atual parameters of the all are mapped in the same order to the maro's formals parameters. Atualsare given in ommand ontext. An atual is typially an aess path or a string. (The latter must be enlosedin double quotes.)If more than one maro with a mathing name exist, the maro to be alled is determined as follows:{ If a maro with the same number of parameters exists, it is alled.{ If maros with less parameters exist, the maro with the most parameters is alled. The superuousformal parameters are valueless.It is possible to hek for valueless parameters with the <?. . . > onstrut (see setion 6.2.3.1).{ If only maros with more parameters exist, a warning is given and the all is ignored.Thus, the maro with the least superuous formal parameters is hosen.Inside the maro, aliases de�ned by a surrounding let (see setion 6.2.6.3) are aessible.Reursive alls are of ourse possible.Calls with no atuals introdue an interesting ambiguity:<name>an be either a all to maro name or an aess path to node name. In suh ases, the ambiguity is resolved in favorof the maro all. For example, the following ode1 # ma/ambiguous.ma23 <def x>4 maro x5 <enddef>67 <set x to variable x>89 <x></>generatesexpanded file ount is 1maro x
15

6.2.3.1 Valueless Parameters and <?. . . > A maro all must not provide values for all formal parameters.Formal parameters that annot be bound to an atual parameter are alled valueless.If an attempt is made to expand a valueless formal parameter, a warning is given and not value is output.However, it is possible to use a valueless formal parameter as an atual parameter in another maro all.� <?param text>Cheks if the formal parameter param is bound to a value. If this is the ase then text is output; otherwise textis ignored and the whole onstrut has no e�et.Note that text is not interpreted as text ontext whih means that it is not possible to swith into ommandontext! For example, the following is illegal:<def foo p1># Illegal!Value of p1 (if existent): <?p1 <p1>>.<enddef>In order to ahieve the desired behavior one an write1 # ma/all_opt.ma23 <def foo p1 p2>4 foo:5 <if ([<?p1 true>℄)>6 \ <p1>7 <endif>8 <if ([<?p2 true>℄)>9 \ <p2>10 <endif>11 </>12 <enddef>1314 <foo>15 <foo "x">16 <foo "x" "y">whih gives the expeted outputexpanded file ount is 1foo:foo: xfoo: x yThis example makes use of text substitution (see setion 6.3).6.2.3.2 CallbaksText substitution (see setion 6.3) an be employed to implement allbaks.� <[<var>℄ atual1 . . . atualN>Expands a maro whose name is given by the aess path var.An ordinary maro all diretly gives the name of the maro. In the this ase, the ontents of var supplies the maroname.The following turtle example deouples the iteration over the ommands list from the ation performed for anindividual list element: 16

1 # turtle/allbak.ma23 # Iteration of the list4 <def iter_ommands allbak>5 <foreah md in turtle.ommand_list.ommands.ommand>6 <[<allbak>℄ md>7 <endfor>8 <enddef>910 # Callbak for eah list element11 <def handle_ommand md>12 <md.text></>13 <enddef>1415 <iter_ommands "handle_ommand">The iteration ode in iter ommands an be reused with di�erent allbaks.6.2.3.3 Calls with Return ValuesText substitution (see setion 6.3) an be used to \return" a string result bak to the aller. If the all isenapsulated with square brakets, the output that the maro all generates is not written to the urrently ativeoutput bu�er; instead, the output is textually substituted for the maro all.The following example shows how this mehanism an be used to implement a maro all that returns a booleanresult. Its output is idential to all opt.ma (see setion 6.2.3.1):1 # ma/all_w_return.ma23 <def exists_param param>4 <if ([<?param true>℄)>5 true6 <else>7 false8 <endif>9 <enddef>1011 <def foo p1 p2>12 foo:13 <if ([<exists_param p1>℄)>14 \ <p1>15 <endif>16 <if ([<exists_param p2>℄)>17 \ <p2>18 <endif>19 </>20 <enddef>2122 <foo>23 <foo "x">24 <foo "x" "y">The maro exists param outputs either the string "true" or "false". By alling the maro with square braketsat a plae that expets a boolean result (lines 13 and 16), the all gets substituted with the output of the all, whih17

then is interpreted as a boolean value.6.2.4 Expansion of Maro FilesThere are two mehanisms that allow the expansion of (ordinary) �les as maro �les: inlude and parse.6.2.4.1 inlude� <inlude maro-�le-name>Proessing of the urrent maro �le is suspended and interpretation of the maro �le with name maro-�le-namestarts.Maro-�le-name is treated as text ontext. Thus, the name an be given literally or built by swithing to theommand ontext.The urrent working diretory as well as diretories given at the smgn ommand line with the -I ag (see setionC) are searhed for the maro �le. If the �le is not found, a warning is given and interpretation proeeds afterthe inlude maro.Interpretation of the inluded �le a�ets the state of the inluding �le. After interpretation of the inluded �lehas been �nished, normal exeution resumes at the inluding �le.Furthermore, the following is important to know:{ The inluded maro �le must not exeute the file onstrut.7{ Output that is generated while the inluded �le is proessed is lost.Thus, the inluded maro �le should typially ontain only maro de�nitions and exeute ommands thatmanipulate the parse tree.6.2.4.2 parse� <parse �le-name>Proessing of the urrent maro �le is suspended and interpretation of the (internal) bu�er with the name�le-name starts. Note that �le-name refers to a bu�er that is urrently (internally) onstruted and not to a�le that resides on disk.File-name is treated as text ontext. Thus, the name an be given literally or built by swithing to the ommandontext.This mehanism allows the dynami generation and interpretation of maro �les. For example, the followingmaro �le dynamially reates two maro de�nitions in the bu�er trash and then alls these de�nitions.1 # ma/parse.ma23 <def build_def fname>4 <file trash>5 \<def <fname> txt>6 <fname>: \<txt>\</>7 \<enddef>8 <enddef>910 <build_def "mydef1">11 <build_def "mydef2">7The urrently implementation redirets the output generated by the inluded maro �le into a dummy output �le. Swithing theoutput �le in the inluded �le onfuses smgn and results in the generation of a �le with the telling name ������.18

1213 <file>14 <parse trash>15 <mydef1 "Hello ">16 <mydef2 "World!">The generated output is as follows:expanded file ount is 2mydef1: Hellomydef2: World!As a (possibly unwanted) side-e�et, the generated bu�er is written to disk after smgn terminates:1 <def mydef1 txt>mydef1: <txt></><enddef><def mydef2 txt>mydef2: <txt></><enddef>However, the �le an prove useful for debugging.6.2.5 Expressions and Data TypesBesides strings, smgn has (pseudo) support for booleans and numbers.6.2.5.1 BooleansBoolean expressions are mainly used by the if maro and the suh that lause of the of the foreah maro.Constants: The boolean onstants \true" and \false" are simply represented as strings "true" and "false", re-spetively.8 For example:1 # ma/boolean1.ma23 <if ("true")>4 I am expanded!</>5 <endif>Sine boolean onstants are strings, it is also possible to given an aess path to a node that ontains a \booleanstring:"1 # ma/boolean2.ma23 <set x to true>45 <if (x)>6 I am expanded!</>7 <endif>Prediates: All boolean prediates take non-boolean values and yield a boolean value. The following prediates areavailable:� (exists node)If the given node exists in the parse tree, this onstrut yields \true." Otherwise it yields \false."Node is treated as ommand ontext (i.e., it is not surrounded by angle brakets).For an example refer to setion 6.2.1.2.8smgn urrently interprets every string di�erent from "true" as \false."19

Operators: All boolean operators take boolean values and yield a boolean value. The following operators areavailable:� (! bool-expr)Unary \not."� (bool-expr && . . . && bool-expr)(bool-expr & . . . & bool-expr)The result is \true" if all bool-exprs are \true," otherwise the result is \false."Both the && and the & operator behave the same. (They are no short-iruit operators.)� (bool-expr | . . . | bool-expr)(bool-expr || . . . || bool-expr)The result is \false" if all bool-exprs are \false," otherwise the result is \true."Both the || and the | operator behave the same. (They are no short-iruit operators.)It is often possible to omit round brakets, but this is disouraged sine no preedene or assoiativity rules arede�ned.It is possible to use numbers (see setion 6.2.5.2) instead of boolean onstants in boolean expressions. However,sine all numbers are treated as \false," this does not seem to make muh sense and hene will not be disussed anyfurther.6.2.5.2 NumbersNumeri expressions are mainly used by the eval onstrut (see setion 6.2.5.4).Constants: A number onstant is a deimal integer value. Optionally, a leading \+" or \�" an be written (withoutwhitespaes before the digits). No oating-point numbers are supported.The numbers are (internally) represented as strings. Beause of this, it is possible to give an aess path to anode that ontains a string that an be interpreted as a number onstant.9The onstant an be arbitrarily large, but prediates and operators restrit the preision.Prediates: Prediates yield a boolean value.� (number == number)(number = number)The above prediates ompare two string for equality. Both the == and the = operator behave the same.� (number != number)The != prediate is idential to(! (string = string)).� (number >= number)� (number > number)� (number <= number)� (number < number)The ompared numbers must be small enough to �t in a C long type.10Operators: All numerial operators take numerial values and yield a numeri value. The following operators areavailable:� (number + number)9If strings are no integers, the result of numerial operations is (for pratial purposes) unpreditable.10Hene the atual size depends upon the ompiler and platform.20

� (number - number)� (number * number)� (number / divisor)First, the divisor is onverted to an integer value. If the divisor is zero, the result is \false." Otherwise,the result is the division onverted to an integer value.Conversion to an integer values is done by trunating the remainder.Every omputation step must be small enough to �t in a C int type.6.2.5.3 StringsStrings are mainly used in boolean expressions and as atual parameters in maro alls.Constants: A strings onstant is enlosed within double quotes:"I am a string onstant"String onstants are only used in ommand ontext. It is not possible to swith to ommand ontext within astring onstant.Prediates: Prediates yield a boolean value.� (string == string)(string = string)The above prediates ompare two string for equality. Both the == and the = prediate behave the same.Typially, string is a string literal or an aess path that results in a node that holds a string.String is treated as ommand ontext. This means that string literals must be enapsulated by quotationmarks. For example:1 <if (turtle.identifier == "myturtle")>2 Strings are idential.3 <endif>� (string != string)� (number >= number)� (number > number)� (number <= number)� (number < number)String omparison uses the ASCII harater set to establish a total ordering of the haraters.6.2.5.4 evalCertain expressions an be only used in ertain maros (e.g., the if maro expets a boolean expression). In ontrast,the eval maro expands an arbitrary expression.� <eval(expr)>Expands the expression expr. The result of the expression is returned as a string.The eval maro is also useful in ombination with the set maro. See setion 6.2.6.1.Here are some examples1 # turtle/eval.ma23 <eval ((1+2)*4)></>4 <eval (turtle.identifier)></>5 <eval ("A string" == turtle.identifier)></>6 <eval (! ("false"))></> 21

with the orresponding output:expanded file ount is 112myturtlefalsetrue6.2.6 De�nitions and AliasesThis setion disusses the possibilities that smgn o�ers to introdue new names and new parse tree nodes.6.2.6.1 Node De�nitions with set� <set node to str>De�nes a (new) node in the parse tree with the aess path node. The ontents of the node is the string str.If the aess path does denote an existing node that is not a string, a warning is given and the maro is ignored.Str is treated as text ontext. Thus, the name an be given literally or built by swithing to the ommandontext.It is not possible to delete a node one it has been introdued with a node de�nition. However, a node an berede�ned. For example, the following ode �rst de�nes a new node x and then rede�nes x by using its \old" ontents:1 # ma/set.ma23 <set x to 42>4 <set x to <eval (x+1)>>It is also possible to rede�ne an existing node that is part of the original parse tree as long as the node denotesa string. This is the ase for leaf nodes whose aess paths end with identifier, verbatim, or text.6.2.6.2 Table De�nitions with setThe set maro in onjuntion with text substitution (see setion 6.3) yield a powerful onstrut alled tables.When speifying an aess path for node, you an give parts of the path in square brakets.11 The text in thesquare brakets is treated as text ontext and gets expanded before the aess path is applied. The following exampledemonstrates the onept:1 <set x[y℄ to whatever>23 <set nodename to y>4 <set x[<nodename>℄ to whatever>The set maros in line 1 and 4 have the same e�et. The aess path in line 1 is equivalent to x.y. The exibilityof tables is demonstrated in line 4. The node nodename is expanded (yielding the string y) resulting in the aesspath x.y. Hene, tables are similar to assoiative arrays.Note that it is possible to \onatenate" square brakets:1 <set x[y℄[z℄ to whatever>Nesting them, however, is not allowed.The following (a bit arti�ial) example heks if a turtle program ontains dupliate turtle ommands.11However, the �rst element of the path must not be a braket; otherwise smgn an get onfused.22

1 # ma/dupliates.ma23 <def hek str1 str2>4 <if (exists dup[<str1>℄[<str2>℄)>5 Dupliate deteted! (<str1>/<str2>)</>6 <endif>78 <set dup[<str1>℄[<str2>℄ to exists>9 <enddef>1011 <foreah md in turtle.ommand_list.ommands.ommand>12 <if (exists md.turn)>13 <hek md.turn.left_or_right md.turn.verbatim>14 <elseif (exists md.up)>15 <hek "up" "">16 <elseif (exists md.down)>17 <hek "down" "">18 <elseif (exists md.forward)>19 <hek "forward" md.forward.verbatim>20 <endif>21 <endfor>The generated output is as follows:expanded file ount is 1Dupliate deteted! (forward/10)6.2.6.3 Aliases with let� <let id be node> . . . <endlet>The name id is de�ned to denote the same parse tree node as the aess path given by node does. Thus, id isan alias (or short-hand form) for node and an be used instead of the full aess path.Id is valid only within the body of the onstrut. More preisely, id is known to all onstruts that are exeutedwithin let's body (dynami name binding). Thus, if a maro is alled in the body, the maro an refer to thede�ned alias.The body of let is (silently) not expanded if the aess path given by node is not valid!12The following turtle maro �le gives an example of the let onstrut:1 # turtle/let.ma23 <def print>4 <t.identifier></>5 <id></>6 <enddef>78 <let t be turtle>9 <let id be t.identifier>10 <print>11 <endlet>12 <endlet>12This an be onveniently used to hange ontrol ow depending if an aess path exists or not. However, it is not intuitive and hardto debug. 23

The orresponding output is a follows:expanded file ount is 1myturtlemyturtleIt is also possible to give a omma-separated list of alias de�nitions. For example, the above example an berewritten less verbose:1 # turtle/let2.ma23 <def print>4 <t.identifier></>5 <id></>6 <enddef>78 <let t be turtle, id be t.identifier>9 <print>10 <endlet>6.2.6.4 Aliases with map� <map node1 to node2>The aess path given by node2 denotes now the parse tree node given by aess path node1. Thus, node2 isan aliased aess path.The map onstrut is a ombination of set and let. It is similar to set in the sense that it de�nes a (new) node inthe parse tree, and similar to let in the sense that an alias to another node is established.It is possible to use square brakets (see setion 6.2.6.2) when speifying the aess path for node1 as well as fornode2.The following example uses map to onstrut a table, whih an then be easily iterated with the foreah onstrut:1 # turtle/map.ma23 <set x[a℄ to a>4 <set x[b℄ to b>5 <set x[℄[a℄ to a>6 <set x[℄[b℄ to b>7 <set x[d℄ to d>89 <map x[a℄ to l[a℄>10 <map x[b℄ to l[b℄>11 <map x[℄[a℄ to l.>12 <map x[℄[b℄ to l.d>13 <map x[d℄ to l[e℄>14 <map turtle.identifier to l[f℄>15 <set l.g to xxx>1617 <foreah value in l.?>18 <value></>19 <endfor>The maro �le generates the following output: 24

ababdmyturtlexxxThe set in line 15 shows that onstruts do not di�erentiate between nodes that have been introdued by set ormap.136.3 Text Substitution with [. . . ℄� [. . . ℄Expands the onstruts between the square brakets. The generated output of these onstruts is then textuallyreplaed with [. . . ℄. Note that this means that the output of the expanded onstruts is not written to theurrently ative output bu�er.The expanded onstruts must not hange the output bu�ers (e.g., by alling the file or input maro).14This substitution only works in the ommand ontext. If used in the text ontext, the square brakets aresimply printed. For example, the following ode1 # ma/sb.ma23 <def m>4 Some output...5 <enddef>67 [<m>℄outputsexpanded file ount is 1[Some output...℄Several onrete appliations of this onstrut have been already disussed:� Callbaks (setion 6.2.3.2).� Table de�nitions with set (setion 6.2.6.2).� Maro alls with return values (setion 6.2.3.3).6.4 Text Handling6.4.1 Content of Parse Tree NodesWhen generating output, it is frequently neessary to aess textual information from the parse tree|either to outputthe ontents of the node or to hange ontrol ow depending on the ontents of the node.13Almost true. If the same aess path is de�ned by set as well as map, then the ontents given by set is always hosen. Thus, in suha ase map has no e�et!14Debugging note: If this is done, a �le with the name ������ will be reated by smgn.
25

� <node> (text ontext)node (ommand ontext)The ontents of a node in the parse tree an be aessed by giving an aess path to that node. (Note that allnodes in the original parse tree represent nonterminals; terminals are lost.) If the aess path does not denotea string, the empty string is output (and no warning is given).The aess path has two spei� variants:{ If the path ends with verbatim or identifier, the ontent of that node is output (i.e., the input thathas been parsed for the orresponding nonterminal).{ If the path ends with text then the ontent of the nonterminal that immediately proeeds text is output.This does not work if the immediately proeeding nonterminal is verbatim or identifier.It is onsidered a mistake to follow an aess path to a node that does not exist. If you do this, no output is generated;you will get a warning message instead.6.4.2 Text Setions with useIt an be awkward to generate sequential output for a �le. Sometimes one would like to generate output for a ertainposition in the output �le without disturbing the other. For example, if generating C ode you might want to putall inlude �les at the top of the �le. One approah would be to proess the text �le twie: The �rst pass outputsthe required inlude �les and the seond pass generates the atual C ode.Fortunately, smgn o�ers a more onvenient approah. It is possible to split an output �le into several setions.The output an then be redireted into an arbitrary setion. The �nal output is obtained by onatenation of thesetions. The setions are ordered sequentially. A new setion is appended at the end after all existing ones. Thus,the order of the generated output depends on the reation time of the setions!� <use setion-name>Output is swithed to the setion with the name setion-name. Furthermore, the previously seleted setion ispushed on the setion stak.Setion-name is treated as text ontext. Thus, the name an be given literally or built by swithing to theommand ontext.If the setion does not exist then a new setion is reated. The output of this setion is printed after allpreviously reated setions.� <use>Output is swithed to the default setion. Furthermore, the previously seleted setion is pushed on the setionstak.� <use *>The topmost setion in the setion stak is popped and output is swithed to this setion.15Eah �le has its own setions. Thus, use depends on the urrent output �le (whih has been set with the filemaro; see setion 6.4.3).Eah �le has a default setion (whih has no name). If a �le is reated, the default setion is the only existingsetion and the setion stak is empty.The setion stak is useful to swith output temporarily to another setion and then swithing bak to thepreviously ative one without atually knowing whih setion was the previously ative one.For example, to generate a lex �le using three setions an be pratial:15The urrent implementation terminates with a segmentation fault if an attempt is made to pop from the empty stak.
26

1 <use regular_definitions>2 <use translation_rules>3 %%4 <use auxiliary_proedures>5 %%6 <use *>7 <use *>8 This output goes to regular_definitions910 <use auxiliary_proedures>11 void install_id() { ... }12 <use *>The output is divided into four onseutive setions: The default setion �rst, followed by regular definitions,translation rules, and auxiliary proedures. The last three lines demonstrate how to use the setion stak.Here is another example:1 <use buket1>2 <use buket2>3 <use buket3>4 3</>5 <use *>6 2</>7 <use *>8 1</>9 <use *>10 0</>1112 <use buket2>13 22</>14 <use *>1516 <use>17 00</>It generates the following output:expanded file ount is 1000122236.4.3 Redireting Output with fileWhen the maro interpreter starts exeuting, the generated output is written to the standard output bu�er (stdout).Typially, the generated output will go to a single �le or will be split up into several �les. The file maro providesthis funtionality:� <file �le-name>The output bu�er is swithed to the bu�er with the name �le-name. Right after interpretation is terminated27

and before smgn terminates, all bu�ers are written to their orresponding �les. This means that the physial�les are not reated right away and only written if smgn terminates normally.File-name is treated as text ontext. Thus, the name an be given literally or built by swithing to the ommandontext.If this is the �rst time that output is swithed to this bu�er, then an empty bu�er with �le-name is reated. Ifthe bu�er already exists, the output is appended to it.After maro �le exeution stops, all bu�ers are written to disk. If a �le with the name �le-name already exists,it is silently overwritten.� <file>The output bu�er is swithed to stdout.Note that every �le an onsist of setions and that swithing to a di�erent �le also restores the state of the setionsof that �le (refer to setion 6.4.2 for further explanation).A �le is written to the urrent working diretory. The �le name an also speify a path (e.g., mydir/myfile).Under Unix, it is possible to, for example, rediret output to stdout by giving /dev/stdout for the �le-name.166.4.4 Text FormattingThis setion disusses onstruts that an be used when generating output.6.4.4.1 Newlines� </>Output a newline harater to the urrently ative output bu�er.(Beause of the intermixing of ommands and text in maro �les, real newlines are not output by default.)The behavior how smgn treats newlines in the maro �les an be hanged with the following (pseudo) maro alls:� <ignore linefeeds>Newlines in the maro �le are ignored in the text ontext. This means that newlines an be only generatedwith </>.This is smgn's default behavior.� <notie linefeeds>Newlines in the maro �le are output as well if they are enountered in a text ontext.An empty line (i.e., the line ontains only non-printed whitespaes) does not ause the output of a newline.For example, assuming text ontext, the seond line does output a newline, whereas the third line does not:<notie linefeeds>\ This ommand is espeially useful to output ontinuous text without luttering the maro �le representationwith lots of </>s.16We disourage using these features beause they are not portable.
28

6.4.4.2 Indentations The following ommands ontrol the indentation (i.e., the number of leading blanks) ofthe output. After every newline the urrent indentation is output.� </=indent>Set the indentation to indent. A negative value sets the indentation to zero.� </+indent>Inrease the urrent indentation by indent.� </-indent>Derease the urrent indentation by indent. The indentation does not drop below zero.� </0>Text within a pair of </0>s are output without indentation. The �rst </0> sets indentation to zero and theseond </0> restores the indentation to its previous setting.Indent must be a number. The new setting of the indentation omes into e�et after a newline (in the orrespondingbu�er) is output.17Here is an example1 # ma/indent.ma23 No indentation so far...4 </=4>5 Text with indentation of 4...6 </+2></>7 Now we have two more...8 </0></>No indentation here!</0>9 </-2></>10 Bak to 4...11 </>with the orresponding output:expanded file ount is 1No indentation so far...Text with indentation of 4...Now we have two more...No indentation here!Bak to 4...6.4.4.3 String FormattingBeause smgn has no mehanism to arbitrary modify strings (exept for onatenation of them), it provides severalprede�ned string manipulation ommands.� <!CAPS node>The string denoted by the aess path node is hanged to all upperase.� <!CPZ node>Changes node so that undersores are eliminated and haraters after undersores are apitalized.17This ould be onsidered a bug. 29

� <!LLC node>Changes the �rst harater to lowerase.� <!LOWS node>Changes node to all lowerase.� <!NSPC node>Eliminate spaes in the string.18� <!SING node>Changes node from plural to singular with the following rules:ies$! y (e.g., spies ! spy)([^s℄)[sS℄$! \1 (e.g., foes ! foe)� <!UNL node>Turns text to lowerase and puts an underline between apitalized haraters and their preeding harater;exept for the �rst harater, whih is only hanged to lowerase.� <!" node>Enlose the string with quotationmarks.� <!' node>Enlose the string with tiks.Note that the above ommands destrutively overwrite the string given by the node aess path. If you do not wantthat, you an �rst opy the string to another node with the set onstrut.The follow tables gives a few examples:Before !CAPS !CPZ !LLC !LOWS !NSPC !SING !UNL !" !'SpieS SPIES SpieS spieS spies { Spie spie s "SpieS" 'SpieS'AaaBC AAABC AaaBC aaaBC aaab { AaaBC aaa b "AaaBC" 'AaaBC'Aa Bb AA BB AaBb Aa Bb aa bb { Aa Bb aa bb " Aa Bb" ' Aa Bb'6.5 Debugging OutputThe following onstruts output information to stderr and are meant for debugging output.6.5.1 eho� <eho text>Print text to stderr. text is treated as text ontext. Thus, it is possible to swith to the ommand ontext.For example, the following turtle maro �le1 # turtle/eho.ma23 <eho Name: <turtle.identifier>>outputseho.ma:3: Name: myturtle<eho Name: <turtle.identifier>>̂expanded file ount is 118The urrent implementation dies with a segmentation fault if the string does not ontain blanks.30

6.5.2 show� <show node>Print the parse tree anhored at aess path node to stderr. A header is printed as well that shows theommand along with its soure position.This maro is useful, for example, inside maros de�ntions when you want to see exatly the ontents of a formalparameter for a spei� all.To print the whole parse tree, one an give the right hand side of the start nonterminal:1 # turtle/show.ma23 <show turtle>The output of the parse tree orresponds to lines 3{66 of Figure 1.If an aess path denotes a terminal, its ontents is printed (without a newline). For example1 # turtle/show2.ma23 <show turtle.identifier>outputsshow2.ma:3: show alled<show turtle.identifier>^myturtleexpanded file ount is 17 Hoof -Spei� FeaturesThe struture of the SUIF intermediate representation (IR) [2℄ is not that muh di�erent from a parse tree. Thus,the SUIF IR graph an be mapped to a orresponding smgn parse tree. This mapped \parse tree" an be traversedand manipulated just like an ordinary one.The SUIF IR graph onsists of the following omponents:Ownership links: Every node in the graph has exatly one parent node, whih \owns" the node.19 Thus, theownership links build an ownership tree. This tree is embedded within the SUIF IR graph.The root of the graph (and of the ownership tree) is a SUIF FileSetBlok. The root is impliity assumed inaess paths.A SUIF node an ontain �elds that hold ownership links.Simple �elds: For simple �elds, you follow the ownership link by using the �eld name in the aess path.For example, the FileBlok node ontains a �eld symbol table, whih holds an ownership link to aSymbolTable node. If the FileBlok node is represented by the aess path fb, then the SymbolTablenode is denoted by the aess path fb.symbol table.Colletion type �elds: All �elds with olletion types (suh as list, searhable list, indexed list, andvetor) represent essentially a list of hildren. Over this list an be iterated with the foreah maro.For example, a StatementList has a �eld statements, whih hold a list of Statement nodes. If theStatementList node is represented by the aess path sl, then the following onstrut iterates over allStatement nodes that are owned by StatementList:19This is true exept for the root node, whih is the SUIF FileSetBlok.31

1 <foreah stmt in sl.statements>2 ...3 <endfor>Referene links: Referene links are similar to ownership links, with the exeption that these referenes are aliasesto other nodes.Thus, the ownership tree orresponds to the parse tree and the referene links orrespond to aliases introduedwith the map onstrut (see setion 6.2.6.4).Primitive values: Fields that hold values of primtive types (suh as bool, int, and LString) onstitute the leafsof the ownership tree. All values are represented as orresponding strings in the smgn parse tree. For example,boolean values are translated to the strings "true" and "false".For SUIF parse trees, smgn o�ers additional onstruts that make use of the lass hierarhy of SUIF nodes. Theseonstruts are disussed in the following two setions.7.1 Dispathing of Maro CallsSetion 6.2.3 explained how a mathing maro de�nition is determined for a maro all. For SUIF nodes, an additionalmathing rule an be used: Mathing of the �rst parameter an be restrited to a spei� node type. Thus, (single)dispathing an be realized.To realize dispathing, the name of the �rst formal parameter is followed by a olon (:), followed by the name ofthe type that the atual must math. The atual will math the exat type or a subtype of the given type. If morethan one maro de�nition mathes, the one with the most \preise" type is hosen.The following example is taken from the text.ma �le of the s2 bak end:1 ### Output alignment of Type in bytes23 <def put_byte_alignment_type type:Type>4 /* Cannot ompute alignment of <!TYPE type> Type */5 <enddef>67 <def put_byte_alignment_type type:QualifiedType>8 <put_byte_alignment_type type.base_type>9 <enddef>1011 <def put_byte_alignment_type type:DataType>12 <eval ([<type.bit_alignment>℄/8)>13 <enddef>1415 <def put_byte_alignment_type type:CProedureType>16 <eval ([<type.bit_alignment>℄/8)>17 <enddef>1819 ...2021 <def handle_Expression expr:ByteAlignmentOfExpression parent_expr>22 <put_byte_alignment_type expr.ref_type>23 <enddef>Depending on the type of the �rst atual in the put byte alignment type all (line 22), the maro all dispathesto the most preise type. The topmost maro de�nition (line 3) implements the \default" behavior.32

7.2 Type TestsIn a SUIF IR parse tree, every node (exept for leafs, whih ontain strings) has a ertain node type.� <!TYPE node>Output the type of the aess path node.If this onstrut is alled for a node that ontains a string, nothing (i.e., the empty string) is output.Node is treated as ommand ontext (i.e., it is not surrounded by angle brakets).This an be used to test for the exat type of a node, suh as in the following example:1 <if ([<!TYPE node>℄ == "PointerType")>2 ...3 <endif>� <!ISKINDOF node node-type>Returns the string "true" or "false", depending if the aess path node has the type or subtype given innode-type.Node is treated as ommand ontext (i.e., it is not surrounded by angle brakets).For example, this onstrut an be used for a type test as follows:1 <if ([<!ISKINDOF node CProedureType>℄)>2 ...3 <endif>8 HintsA good way to learn smgn is to simply look at the existing maro �les that ome with the SUIF system. Still, toinrease the learning urve, this setion provides several hopefully useful hints.Using terminals to distinguish parses: Sometimes terminal symbols are used in alternatives (e.g., line 12 in theturtle grammar). The text node an then be used to retrieve the mathing terminal, for example:1 <if (turn.left_or_right == "left")>2 ...3 <elseif (turn.left_or_right == "right")>4 ...5 <endif>Epsilon rules: One should try to speify epsilon rules as \early" as possible in the grammer.For example, onsider the following grammer �le for our turtle example:1 # "Wrong" grammar for turtle graphis (turtle/wrong.grm)23 <start> ::= <turtle>4 <turtle> ::= turtle <identifier> "{" <ommands> "}"56 <ommands> ::= <ommand> | <ommand> <ommands>7 <ommand> ::= <turn> | <up> | <down> | <forward> |89 <turn> ::= turn <left_or_right> by <verbatim> degrees ;10 <left_or_right> ::= left | right11 <up> ::= up ; 33

12 <down> ::= down ;13 <forward> ::= forward <verbatim> ;Note that the ommand nonterminal (line 7) an now expand to nothing. Compared to the original grammar,this one gets rid of the nonterminal ommand list and looks simpler; so, why not use this one?Here is the aompanying foreah onstrut (analogous to foreah3.ma shown in setion 6.2.1.2):1 # turtle/foreah3.wrong.ma23 <foreah md in turtle.ommands.ommand>4 <md.text></>5 <endfor>Besides making the life of the parser more ompliated, this solution has the following nasty drawbak: Awarning is generated if no turtle ommands are given, i.e., if the turtle �le looks as follows:1 # Empty turtle program (empty.turtle)23 turtle empty {4 }In this ase, the ommands nonterminal expands to nothing and hene the interpreter generates the followingwarning:foreah3.wrong.ma:4: warning: name md.text not found<md.text></>^valid names are emptyexpanded file ount is 1In order to avoid this problem, you an, for example, modify the maro �le as follows:1 # turtle/foreah3.wrong.fix.ma23 <foreah md in turtle.ommands.ommand suh that4 (exists turtle.ommands.ommand.text)>5 <md.text></>6 <endfor>Still, you should refrain from using this grammar and make your life more ompliated.Iterators with allbaks: Using an iterator that generates a allbak for every element to be proessed deouplesthe onrete parse tree from the ation to be performed on a ertain node in the parse tree. Setion 6.2.3.2gives an example.Maros in text ontext: Several maros expet strings, whih are given in text ontext. This feature an be usedto put omplex maro instead of simple names, for example:1 # turtle/set2.ma23 <set result to <if (turtle.identifier == "myturtle")>4 yes5 <else>6 no7 <endif>>89 <result></> 34

Empty versus existent nodes: A node an be existent in the parse tree, yet empty. To hek whether a node nexists use(exists n)To hek whether a node exists and is not empty use(exists n.text)This works sine the text node is only reated if the parent node is assoiated with parsed text.Exeute frequently: It is a good idea while hanging a maro �le to exeute it frequently|even after a smallhange. In ase of a syntax error, smgn never omplains. Instead, a ertain part of the maro �le is ignored orsmgn loops in�nitely!For example, the if maro in the following maro �le is missing a losing angle braket (end of line 4):1 # ma/syntax_error.ma23 Before the if</>4 <if ("true")5 Syntax Error (missing "<")</>6 <endif>7 After the if</>In this ase, smgn skips the if maro (and part of the following output):expanded file ount is 1Before the iffter the ifHere is another example:1 # turtle/syntax_error.ma23 <if turtle.identifier == "myturtle">4 Never gets expanded!</>5 <endif>The boolean expression of the if maro is not enapuslated by round brakets. Beause of this, the body ofthe maro will never be exeuted.Suh bugs an be extremely hard to trae, expeially if you made lots of hanges in your maro �le sine thelast test run.20Debugging output: Do not aidently generate debug output for maro alls that are supposed to \return" aboolean result. . .9 Disussion of smgn's ApproahWe already outlined smgn's appliation domain in setion 2. In the following, we try to briey evaluate smgn'sstrengths and weaknesses.20Using the smgn emas mode helps somewhat in athing these kind of errors.
35

9.1 Strengths� Very well suited for rapid prototyping of domain-spei� languages.� Uni�ed onepts for proessing of parse trees generated from a grammar spei�ation and from a SUIF IRgraph. Thus, it is not neessary to learn two di�erent onepts when working on SUIF.� Simple and intuitive; thus easy to learn.219.2 Weaknesses� The grammar spei�ation and the maro ode that traverses the resulting parse tree are tighlty oupled. Thus,hanges in the grammar usually mean hanges in the maro ode.22� It is not possible to abstrat from the onrete syntax given by the grammar by building an abstrat syntaxtree.� There is no syntax heking of the maro �les. For syntax errors, smgn typially fails silently (skipping part ofthe maro ode).� There is no good support to generate error messages. Most notably, no line number information is present inthe parse tree.� It is not possible to all external programs (\shell esape").� There is no high-level spei�ation that desribes parse tree transformations.Even though by looking at the lists one ould get the impression that smgn's weaknesses outweight its bene�ts,most weaknesses are missing funtionality that is in pratie not ruially needed.A Turtle ExampleThis example shows how to speify a grammar and maro �le for a simple domain spei� language, alled turtle. Itis used as a running example in this manual.The turtle language is a small sripting language to draw a piture with turtle graphis. Its meaning should beintuitive to understand.A.1 Grammar File (turtle.grm)The following grammar is used to onstrut the parse tree of a turtle program:1 # Toy grammar for turtle graphis (turtle/turtle.grm)23 <start> ::= <turtle>4 <turtle> ::= turtle <identifier> "{" <ommand_list> "}"56 <ommand_list> ::= <ommands> |78 <ommands> ::= <ommand> | <ommand> <ommands>9 <ommand> ::= <turn> | <up> | <down> | <forward>1011 <turn> ::= turn <left_or_right> by <verbatim> degrees ;21This might be an enthusiasti overstatement, but hopfully this statement is true when one uses this manual!22Using allbaks an mitigate this problem. 36

12 <left_or_right> ::= left | right13 <up> ::= up ;14 <down> ::= down ;15 <forward> ::= forward <verbatim> ;A.2 Sample Input File (myturtle.turtle)The following example program is used by all turtle maros desribed in this manual:1 # Toy turtle program (turtle/myturtle.turtle)23 turtle myturtle {4 down;5 forward 10;6 turn left by -90 degrees;7 forward 10;8 }A.3 Maro File (ps.ma)The following maro �le is a bigger and omplete example. It generates orresponding PostSript output for theturtle ommands.1 # turtle/ps.ma23 # Introdued nodes:4 # angle (urrent orientation of turtle)5 # pen ("up" or "down")6 # Temporary nodes:7 # newangle89 ### Maro Definitions1011 # Iterate over the ommand list with allbak12 <def iter_ommands allbak p1 p2 p3>13 <foreah md in turtle.ommand_list.ommands.ommand>14 <[<allbak>℄ md p1 p2 p3>15 <endfor>16 <enddef>1718 # Depending on the atual ommand, all the orresponding allbak19 <def handle_ommand md allbak>20 <if (exists md.turn)>21 <[<allbak>℄_turn md.turn.left_or_right.text md.turn.verbatim>22 <elseif (exists md.up)>23 <[<allbak>℄_up>24 <elseif (exists md.down)>25 <[<allbak>℄_down>26 <elseif (exists md.forward)>27 <[<allbak>℄_forward md.forward.verbatim>28 <else>29 %%% Error: Unknown ommand: md.text</>37

30 <endif>31 <enddef>3233 <def handle__turn left_or_right newangle>34 <if (left_or_right == "left")>35 # Reverse the sign36 <set newangle to <eval (0 - newangle)>>37 <endif>3839 # Compute new angle40 <set angle to <eval (angle + newangle)>>41 <enddef>4243 <def handle__up>44 <set pen to up>45 <enddef>4647 <def handle__down>48 <set pen to down>49 <enddef>5051 <def handle__forward length>52 # Compute new position of pen:53 # sin(angle) * length + os(angle) * length54 <angle> sin</>55 <length> mul</>56 <angle> os</>57 <length> mul</>5859 <if (pen == "up")>60 # Change position without drawing61 rmoveto</>62 <elseif (pen == "down")>63 # Draw line64 rlineto</>65 <else>66 %%% Error: `pen' neither "up" nor "down".</>67 <endif>68 <enddef>6970 ### Start of exeution7172 # Generated postsript output goes to `out.ps'.73 <file out.ps>7475 # At startup, the turtle's pen is up76 <set pen to up>7778 # At startup, the turtle points north.79 <set angle to 0>80 38

81 4 setlinewidth</>82 newpath</>83 200 200 moveto</>8485 <iter_ommands "handle_ommand" "handle_">8687 stroke</>88 showpage</>This maro ode makes extensive use of allbaks. If you do not like this style, you an of ourse \inline" theallbaks and end up with a more monolithi style.The generated ode is written to out.ps. You an view the result of the generated ode as follows:smgn turtle.grm myturtle.turtle ps.ma ; gs out.psA.4 Generated PostSript OutputIf you runsmgn turtle.grm myturtle.turtle ps.mathen the following PostSript ode is generated:1 4 setlinewidth2 newpath3 200 200 moveto4 0 sin5 10 mul6 0 os7 10 mul8 rlineto9 90 sin10 10 mul11 90 os12 10 mul13 rlineto14 stroke15 showpage

39

B Command Summary� # 4.1.2, p. 5A line starting with a # is a omment line.� <>Allows to ontinue text on the next line. After <>, newlines and whitespaes are ignored.� \har 6.1, p. 9In text ontext, the single harater har is esaped.� <node-aess-path> 6.4.1, p. 25Outputs the ontents of a node in the parse tree spei�ed by the aess path.� <maro-name atual1 . . . atualN> 6.2.3, p. 15Expands (or alls) a maro.� </> 6.4.4.1, p. 28Output a newline harater to the urrently ative output bu�er.� </=indent> 6.4.4.2, p. 29</+indent></-indent></0>Text indentation.� <?param text> 6.2.3.1, p. 16Cheks if the formal parameter param is bound to a value. If so, text is expanded.� <!CAPS node> 6.4.4.3, p. 29<!CPZnode><!LLC node><!LOWS node><!NSPC node><!SING node><!UNL node><!" node><!' node>Destrutive text formatting of node.� <!TYPE node> 7.2, p. 33<!ISKINDOF node node-type>Type tests for SUIF parse trees.� <def name formal1 . . . formalN> . . . <enddef> 6.2.2, p. 14 (7.1, p. 32)De�nes a new maro.� <eho text> 6.5.1, p. 30Print (debugging) text to stderr.� <eval(expr)> 6.2.5.4, p. 21Outputs the result of the expression expr.� <endma> 6.2.1.3, p. 14Immediately terminates expansion of a maro de�nition.40

� (first id) 6.2.1.2.2, p. 13This prediate is \true" if the urrent list element (denoted by id) is the �rst element that is proessed in theorresponding foreah maro.� <foreah id in tree-node suh that (bool-expr)> . . . <endfor> 6.2.1.2, p. 10This onstruts iterates over a list. The optional suh that lause in this onstrut an be used to put arestrition on the seleted list elements.� <if (bool-expr)> . . . 6.2.1.1, p. 10<elseif (bool-expr)><elseif (bool-expr)> . . .<else> . . .<endif>� (exists node) 6.2.5.1, p. 19Prediate that heks whether the given node exists in the parse tree.� <ignore linefeeds> 6.4.4.1, p. 28� <inlude maro-�le-name> 6.2.4.1, p. 18Start interpretation of given maro �le.� (last id) 6.2.1.2.2, p. 13This prediate is \true" if the urrent list element (denoted by id) is the last element that is proessed in theorresponding foreah maro.� <let id be node> . . . <endlet> 6.2.6.3, p. 23The name id is aliased to the aess path node.� <map node1 to node2> 6.2.6.4, p. 24The existing aess path node1 is aliased with node2.� <notie linefeeds> 6.4.4.1, p. 28� <parse �le-name> 6.2.4.2, p. 18Start interpretation of the given (internal) bu�er.� <pos id> 6.2.1.2.3, p. 13Ouput the urrent number of iterations of the orresponding foreah maro.� <set node to str> 6.2.6.1, p. 22De�nes a (new) node in the parse tree with the aess path node and the ontents str.� <show node> 6.5.2, p. 31Print the parse tree anhored at aess path node to stderr.� <use setion-name> 6.4.2, p. 26Output is swithed to the setion with the name setion-name.<use>Output is swithed to the default setion.<use *>Pop setion from setion stak.
41

C Command LineInvoation of smgn without any parameters prints the ommand line options:usage is smgn <options> <grammar> <soure> <maro file 1> <maro file 2> ...options are: -p print result of parsing soure-d debug maro expansion-D<name>=<value> define a name for maro expansion-I<diretory> add diretory for inludesThe maro �les are exeuted in the order that they appear on the ommand line.For example, the turtle maro �les are exeuted as follows:smgn turtle.grm myturtle.turtle maro-�le.maCommand line options:-p: The omplete parse tree is printed that has been generated by reading the input �le (before the maro �les areexeuted). An example of suh a parse tree output is given in Figure 1.-d: Invokes the interative, built-in debugger (right before the maro �les are exeuted). Typing \h" or \?" printsa ommand summary of the debugger.23-Dname=str: Before exeution starts, the node name is put at the root of the parse tree with the string value str.The name must not ontain a dot, whih means that only hild nodes of the (impliit) root an be reated. Asusual, the spei�ed string an be aessed in a maro �le with<name>If the same name is given multiple times on the ommand line, the value of the �rst de�nition is hosen.-Idir: Add the diretory dir to the list of diretories to be searhed when looking for a maro �le to exeute. Bydefault, the urrent diretory is the only one that is searhed.The list of diretories is used when searhing for maro �les given by the ommand line as well as by the inputmaro.Referenes[1℄ SUIF2 Home Page, http://suif.stanford.edu/suif/suif2.[2℄ Gerald Aigner, Amer Diwan, David L. Heine, Monia S. Lam, David L. Moore, Brian R. Murphy, ConstantineSapuntzakis, The Basi SUIF Programming Guide, November 1999.[3℄ Bauhaus Home Page, http://www.informatik.uni-stuttgart.de/ifi/ps/bauhaus.
23The debugger is not very intuitive to use and explaining it in more detail would be a good idea, but this manual is already too long. . .42

